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Introduction The IMSL Fortran Numerical Libraries

Introduction

The IMSL Fortran Numerical Libraries

The IMSL Libraries consist of two separate, but coordinated Libraries that allow easy user access. These Libraries
are organized as follows:

MATH LIBRARY general applied mathematics and special functions

The User's Guide for IMSL MATH LIBRARY has two parts:

MATH LIBRARY
MATH LIBRARY Special Functions
STAT/LIBRARY statistics

Most of the routines are available in both single and double precision versions. Many routines are also available
for complex and complex-double precision arithmetic. The same user interface is found on the many hardware
versions that span the range from personal computer to supercomputer. Note that some IMSL routines are not
distributed for FORTRAN compiler environments that do not support double precision complex data. The specific
names of the IMSL routines that return or accept the type double complex begin with the letter “Z" and, occasion-

ally, “DC."



Introduction Getting Started

Getting Started

IMSL MATH LIBRARY Special Functions is a collection of FORTRAN subroutines and functions useful in research
and statistical analysis. Each routine is designed and documented to be used in research activities as well as by
technical specialists.

To use any of these routines, you must write a program in FORTRAN (or possibly some other language) to call the
MATH LIBRARY Special Functions routine. Each routine conforms to established conventions in programming and
documentation. We give first priority in development to efficient algorithms, clear documentation, and accurate
results. The uniform design of the routines makes it easy to use more than one routine in a given application.
Also, you will find that the design consistency enables you to apply your experience with one MATH LIBRARY Spe-
cial Functions routine to all other IMSL routines that you use.



Introduction Finding the Right Routine

Finding the Right Routine

The organization of IMSL MATH LIBRARY Special Functions closely parallels that of the National Bureau of Stan-
dards' Handbook of Mathematical Functions, edited by Abramowitz and Stegun (1964). Corresponding to the NBS
Handbook, functions are arranged into separate chapters, such as elementary functions, trigonometric and
hyperbolic functions, exponential integrals, gamma function and related functions, and Bessel functions. To locate
the right routine for a given problem, you may use either the table of contents located in each chapter introduc-

tion, or one of the indexes at the end of this manual.
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Organization of the Documentation

This manual contains a concise description of each routine, with at least one demonstrated example of each rou-
tine, including sample input and results. You will find all information pertaining to the Special Functions Library in
this manual. Moreover, all information pertaining to a particular routine is in one place within a chapter.

Each chapter begins with an introduction followed by a table of contents that lists the routines included in the
chapter. Documentation of the routines consists of the following information:

IMSL Routine’'s Generic Name

Purpose: a statement of the purpose of the routine. If the routine is a function rather than a
subroutine the purpose statement will reflect this fact.

Function Return Value: a description of the return value (for functions only).

Required Arguments: a description of the required arguments in the order of their occurrence.
Input arguments usually occur first, followed by input/output arguments, with output arguments
described last. Futher, the following terms apply to arguments:

Input Argument must be initialized; it is not changed by the routine.

Input/Output Argument must be initialized; the routine returns output through this argument; cannot be
a constant or an expression.

Input or Output Select appropriate option to define the argument as either input or output. See individual
routines for further instructions.

Output No initialization is necessary; cannot be a constant or an expression. The routine returns output
through this argument.

Optional Arguments: a description of the optional arguments in the order of their occurrence.
Fortran 90 Interface: a section that describes the generic and specific interfaces to the routine.

Fortran 77 Style Interface: an optional section, which describes Fortran 77 style interfaces, is
supplied for backwards compatibility with previous versions of the Library.

ScalLAPACK Interface: an optional section, which describes an interface to a ScaLAPACK based
version of this routine.

Description: a description of the algorithm and references to detailed information. In many cases,
other IMSL routines with similar or complementary functions are noted.

Comments: details pertaining to code usage.

Programming notes: an optional section that contains programming details not covered elsewhere.
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Example: at least one application of this routine showing input and required dimension and type
statements.

Output: results from the example(s). Note that unique solutions may differ from platform to
platform.

Additional Examples: an optional section with additional applications of this routine showing input
and required dimension and type statements.
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Naming Conventions

The names of the routines are mnemonic and unique. Most routines are available in both a single precision and
a double precision version, with names of the two versions sharing a common root. The root name is also the
generic interface name. The name of the double precision specific version begins with a“D’. The single precision
specific version begins with an “S_". For example, the following pairs are precision specific names of routines in
the two different precisions: S_GAMDF/D_GANDF (the root is “GANDF ,” for “Gamma distribution function”) and
S PO DF/D_PA DF (the root is “POl DF,” for “Poisson distribution function”). The precision specific names of the
IMSL routines that return or accept the type complex data begin with the letter “C_" or “Z_" for complex or dou-
ble complex, respectively. Of course the generic name can be used as an entry point for all precisions supported.

When this convention is not followed the generic and specific interfaces are noted in the documentation. For
example, in the case of the BLAS and trigonometric intrinsic functions where standard names are already estab-
lished, the standard names are used as the precision specific names. There may also be other interfaces supplied
to the routine to provide for backwards compatibility with previous versions of the Library. These alternate inter-
faces are noted in the documentation when they are available.

Except when expressly stated otherwise, the names of the variables in the argument lists follow the FORTRAN
default type for integer and floating point. In other words, a variable whose name begins with one of the letters
“I "through “N'"is of type | NTEGER and otherwise is of type REAL or DOUBLE PRECI SI ON depending on the
precision of the routine.

An assumed-size array with more than one dimension that is used as a FORTRAN argument can have an
assumed-size declarator for the last dimension only. In the MATH LIBRARY Special Functions routines, the infor-
mation about the first dimension is passed by a variable with the prefix “LD" and with the array name as the root.
For example, the argument LDA contains the leading dimension of array A. In most cases, information about the
dimensions of arrays is obtained from the array through the use of Fortran 90's size function. Therefore, argu-
ments carrying this type of information are usually defined as optional arguments.

Where appropriate, the same variable name is used consistently throughout a chapter in the MATH LIBRARY Spe-
cial Functions. For example, in the routines for random number generation, NR denotes the number of random
numbers to be generated, and Ror | Rdenotes the array that stores the numbers.

When writing programs accessing the MATH LIBRARY Special Functions, the user should choose FORTRAN names
that do not conflict with names of IMSL subroutines, functions, or named common blocks. The careful user can
avoid any conflicts with IMSL names if, in choosing names, the following rules are observed:

Do not choose a name that appears in the Alphabetical Summary of Routines, at the end of the
User's Manual, nor one of these names precededbyaD S ,D_,C ,orZ_.
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Do not choose a name consisting of more than three characters with a numeral in the second or
third position.

For further details, see the section on Reserved Names in the Reference Material.
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Using Library Subprograms

The documentation for the routines uses the generic name and omits the prefix, and hence the entire suite of
routines for that subject is documented under the generic name.

Examples that appear in the documentation also use the generic name. To further illustrate this principle, note
the BSINS documentation (see Chapter 6, “Bessel Functions”, of this manual). A description is provided for just one
data type. There are four documented routines in this subject area: S_BSJINS, D_BSJINS, C_BSJNS, and
Z_BSJNS.

These routines constitute single-precision, double-precision, complex, and complex double-precision versions of
the code.

The appropriate routine is identified by the Fortran 90 compiler. Use of a module is required with the routines.
The naming convention for modules joins the suffix “_i nt ” to the generic routine name. Thus, the line “use
BSINS_| NT"is inserted near the top of any routine that calls the subprogram “BSINS". More inclusive modules
are also available. For example, the module named i nsl _| i br ari es contains the interface modules for all
routines in the library.

When dealing with a complex matrix, all references to the transpose of a matrix, 4”are replaced by the adjoint
matrix

Al =4"=4"

where the overstrike denotes complex conjugation. IMSL Fortran Numerical Library linear algebra software uses
this convention to conserve the utility of generic documentation for that code subject. All references to orthogo-
nal matrices are to be replaced by their complex counterparts, unitary matrices. Thus, an n x n orthogonal matrix

Q satisfies the condition Q'Q = 1. An n x n unitary matrix V satisfies the analogous condition for complex matri-

ces, V'V =1I,
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Programming Conventions

In general, the IMSL MATH LIBRARY Special Functions codes are written so that computations are not affected by
underflow, provided the system (hardware or software) places a zero value in the register. In this case, system
error messages indicating underflow should be ignored.

IMSL codes also are written to avoid overflow. A program that produces system error messages indicating over-
flow should be examined for programming errors such as incorrect input data, mismatch of argument types, or
improper dimensioning,.

In many cases, the documentation for a routine points out common pitfalls that can lead to failure of the
algorithm.

Library routines detect error conditions, classify them as to severity, and treat them accordingly. This error-han-
dling capability provides automatic protection for the user without requiring the user to make any specific
provisions for the treatment of error conditions. See the section on User Errors in the Reference Material for fur-
ther details.
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Module Usage

Users are required to incorporate a “use” statement near the top of their program for the IMSL routine being
called when writing new code that uses this library. However, legacy code which calls routines in the previous ver-
sion of the library without the presence of a “use” statement will continue to work as before. The example
programs throughout this manual demonstrate the syntax for including use statements in your program. In addi-
tion to the examples programs, common cases of when and how to employ a use statement are described
below.

Users writing new programs calling the generic interface to IMSL routines must include a use
statement near the top of any routine that calls the IMSL routines. The naming convention for
modules joins the suffix “_i nt " to the generic routine name. For example, if a new program is
written calling the IMSL routines LFTRGand LFSRG then the following use statements should be
inserted near the top of the program:

USE LFTRG | NT
USE LFSRG | NT

In addition to providing interface modules for each routine individually, we also provide a module named
‘i mel _I i brari es” which contains the generic interfaces for all routines in the library. For programs that
call several different IMSL routines using generic interfaces, it can be simpler to insert the line

USE | MSL_LI BRARI ES
rather than list use statements for every IMSL subroutine called.

Users wishing to update existing programs to call other routines from this library should
incorporate a use statement for the new routine being called. (Here, the term “new routine” implies
any routine in the library, only “new” to the user’s program.) For example, if a call to the generic
interface for the routine LSARGIs added to an existing program, then

USE LSARG | NT
should be inserted near the top of your program.

Users wishing to update existing programs to call the new generic versions of the routines must
change their calls to the existing routines to match the new calling sequences and use either the
routine specific interface modules or the all encompassing “i msl _I i br ari es” module.

Code which employed the “use numeri cal _| i brari es” statement from the previous version
of the library will continue to work properly with this version of the library.

10
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Programming Tips

It is strongly suggested that users force all program variables to be explicitly typed. This is done by including the
line“l MPLI CI T NONE" as close to the first line as possible. Study some of the examples accompanying an IMSL
Fortran Numerical Library routine early on. These examples are available online as part of the product.

Each subject routine called or otherwise referenced requires the “use” statement for an interface block designed
for that subject routine. The contents of this interface block are the interfaces to the separate routines available
for that subject. Packaged descriptive names for option numbers that modify documented optional data or inter-
nal parameters might also be provided in the interface block. Although this seems like an additional complication,
many typographical errors are avoided at an early stage in development through the use of these interface
blocks. The “use” statement is required for each routine called in the user’s program.

However, if one is only using the Fortran 77 interfaces supplied for backwards compatibility then the “use” state-
ments are not required.

11
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Optional Subprogram Arguments

IMSL Fortran Numerical Library routines have required arguments and may have optional arguments. All argu-
ments are documented for each routine. For example, consider the routine GCl Nwhich evaluates the inverse of
a general continuous CDF. The required arguments are P, X, and F. The optional arguments are | OPT and M
Both | OPT and Mtake on default values so are not required as input by the user unless the user wishes for these
arguments to take on some value other than the default. Often there are other output arguments that are listed
as optional because although they may contain information that is closely connected with the computation they
are not as compelling as the primary problem. In our example code, GCI N if the user wishes to input the
optional argument “I OPT" then the use of the keyword “I OPT="in the argument list to assign an input value to
I OPT would be necessary.

For compatibility with previous versions of the IMSL Libraries, the NUMERI CAL_ LI BRARI ES interface module
includes backwards compatible positional argument interfaces to all routines which existed in the Fortran 77 ver-
sion of the Library. Note that it is not necessary to use “use” statements when calling these routines by
themselves. Existing programs which called these routines will continue to work in the same manner as before.

12
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Error Handling

The routines in IMSL MATH LIBRARY Special Functions attempt to detect and report errors and invalid input.
Errors are classified and are assigned a code number. By default, errors of moderate or worse severity result in
messages being automatically printed by the routine. Moreover, errors of worse severity cause program execu-
tion to stop. The severity level as well as the general nature of the error is designated by an “error type” with
numbers from 0 to 5. An error type 0 is no error; types 1 through 5 are progressively more severe. In most cases,
you need not be concerned with our method of handling errors. For those interested, a complete description of
the error-handling system is given in the Reference Material, which also describes how you can change the default

actions and access the error code numbers.

13
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Printing Results

None of the routines in IMSL MATH LIBRARY Special Functions print results (but error messages may be printed).
The output is returned in FORTRAN variables, and you can print these yourself.

The IMSL routine UMACH (see the Reference Material section of this manual) retrieves the FORTRAN device unit
number for printing. Because this routine obtains device unit numbers, it can be used to redirect the input or
output. The section on Machine-Dependent Constants in the Reference Material contains a description of the rou-

tine UMACH

14
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Elementary Functions

Routines

Evaluates the argument ofa complexnumber ...................... CARG 17
Evaluates the cube root of a real or complexnumber ................ CBRT 19
Evaluates (e¥- 1)/xforrealorcomplexx.........coovviiuiinnnn... EXPRL 21
Evaluates the complex base 10 logarithm, logigz. .. ............... LOG10 23
Evaluates In(x + 1) forreal orcomplexx...........coueeiieeoo... ALNREL 25

15
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Usage Notes

The “relative” function EXPRL is useful for accurately computing €* - 1 near x = 0. Computing €* - 1 using
EXP(X) - 1 near x =0 is subject to large cancellation errors.

Similarly, ALNREL can be used to accurately compute In(x + 1) near x = 0. Using the routine ALOGto compute
In(x + 1) near x = 0 is subject to large cancellation errors in the computation of 1 + X

16



Elementary Functions CARG

CARG

This function evaluates the argument of a complex number.

Function Return Value

CARG — Function value. (Output)
If z=x+ iy, then arctan(y/x) is returned except when both x and y are zero. In this case, zero is
returned.

Required Arguments

Z — Complex number for which the argument is to be evaluated. (Input)

FORTRAN 90 Interface

Generic; CARG(2)
Spedcific: The specific interface names are S_CARGand D_CARG

FORTRAN 77 Interface

Single: CARG(2)
Double: The double precision function name is ZARG
Description

Arg(2) is the angle B in the polar representation z = |z|e® where j= v—1.

If z=x + iy, then @ = tan™ ' (y/x) except when both x and y are zero. In this case, 8 is defined to be zero

Example
In this example, Arg(1 + /) is computed and printed.

USE CARG | NT
USE UMACH | NT

IMPLICIT  NONE

17



Elementary Functions CARG

! Decl are vari abl es
| NTEGER NOUT

REAL VALUE
COVPLEX z
! Conput e
z = (1.0, 1.0)
VALUE = CAR(E 2)

! Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) Z, VALUE

99999 FORMAT (' CARG(', F6.3, ',', F6.3, ') ="', F6.3)
END

Output

CARG( 1.000, 1.000) = 0.785

18
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CBRT

This function evaluates the cube root.

Function Return Value

CBRT — Function value. (Output)

Required Arguments

X — Argument for which the cube root is desired. (Input)

FORTRAN 90 Interface

Generic: CBRT (X)
Spedcific: The specific interface names are S_CBRT, D_CBRT, C_CBRT, and Z_CBRT.

FORTRAN 77 Interface

Single: CBRT (X)
Double: The double precision name is DCBRT.

Complex:The complex precision name is CCBRT.

Double Complex: The double complex precision name is ZCBRT.

Description

The function CBRT(X) evaluates x'/3. All arguments are legal. For complex argument, x, the value of |x| must not

overflow.

Comments

For complex arguments, the branch cut for the cube root is taken along the negative real axis. The argument of
the result, therefore, is greater than —-11/3 and less than or equal to T1/3. The other two roots are obtained by

rotating the principal root by 3 11/3 and /3.

19
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Examples

Example 1

In this example, the cube root of 3.45 is computed and printed.

99999

Output

CBRT(

USE CBRT_I NT
USE UMACH | NT

IMPLICIT NONE
Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

Conmput e
X = 3.45
VALUE = CBRT( X)

Print the results
CALL UMACH (2, NOUT)
VRI TE (NOUT, 99999) X, VALUE

FORMAT (' CBRT(', F6.3, ') = ', F6.3)
END
3.450) = 1.511

Example 2

In this example, the cube root of -3 + 0.0076/ is computed and printed.

99999

Output

USE UMACH I NT
USE CBRT_[NT
I MPLI CI T NONE

Decl are vari abl es
| NTEGER NOUT
COVPLEX VALUE, Z

(-3.0, 0.0076)
CBRT( 2)

Conmput e

Z
VALUE
Print the results

CALL UMACH (2, NOUT)

VRI TE ( NOUT, 99999) Z, VALUE

FORVAT (' CBRT((', F7.4, ',', F7.4, ")) = (', &
F6.3, ',’, F6.3, "))

END

CBRT( (-3.0000, 0.0076)) = ( 0.722, 1.248)

20
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EXPRL

This function evaluates the exponential function factored from first order, (EXP(X) - 1.0)/X

Function Return Value

EXPRL — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: EXPRL (X)
Specific: The specific interface names are S_EXPRL, D_EXPRL, and C_EXPRL.

FORTRAN 77 Interface
Single: EXPRL (X)
Double: The double precision function name is DEXPRL.

Complex:The complex name is CEXPRL.

Description

The function EXPRL(X) evaluates (e* - 1)/x. It will overflow if ¥ overflows. For complex arguments, z, the argu-
ment z must not be so close to a multiple of 2 11/ that substantial significance is lost due to cancellation. Also, the
result must not overflow and | 3z| must not be so large that the trigonometric functions are inaccurate.

Examples

Example 1

In this example, EXPRL(0.184) is computed and printed.

USE EXPRL_I NT

21
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USE UVACH_I NT
IMPLICIT NONE
I NTEGER NOUT

REAL VALUE, X
!

X = 0.184

VALUE = EXPRL(X)

Decl are vari abl es

Conput e

Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' EXPRL(', F6.3, ') ="', F6.3)

END

Output

EXPRL( 0.184) = 1.098

Example 2
In this example, EXPRL(0.0076/)

USE EXPRL_I NT
USE UMACH_| NT

IMPLICIT  NONE

I NTEGER NOUT
COWVPLEX VALUE, Z

Z
VALUE

EXPRL( Z)

is computed and printed.

Decl are vari abl es

Conmput e

(0.0, 0.0076)

Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) Z, VALUE

99999 FORMAT (' EXPRL((',
F6.3, ',' F6.3,
END

Output

EXPRL(( 0.0000, 0.0076))

F7.4, ',', F7.4, ")) = ('
)

= ( 1.000, 0.004)

22
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LOGI10

This function extends FORTRAN's generic log10 function to evaluate the principal value of the complex common
logarithm.

Function Return Value

LOG10 — Complex function value. (Output)

Required Arguments

Z — Complex argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: LOGLO (2)
Specific: The specific interface names are CLOGLO0 and ZLOGL10.

FORTRAN 77 Interface

Complex: CLOG10 ( 2)
Double complex:The double complex function name is ZLOGLO.

Description

The function LOGLO(Z) evaluates log;q (2) . The argument must not be zero, and |z| must not overflow.

Example

In this example, the log;(0.0076/) is computed and printed.

USE LOGLO_| NT
USE UMACH_| NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT
COVPLEX VALUE, Z
! Conput e
Z = (0.0, 0.0076)

23
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VALUE = LOGLO(Z)

Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) Z, VALUE

99999 FORMAT (' LOGLO((',

F6.3, ','

END

Output

LOGLO(( 0. 0000, 0.0076))

F7.4,

", F7.4, ")) = (
F6.3, ')

)

= (-2.119, 0.682)

&
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ALNREL

This function evaluates the natural logarithm of one plus the argument, or, in the case of complex argument, the
principal value of the complex natural logarithm of one plus the argument.

Function Return Value

ALNREL — Function value. (Output)

Required Arguments

X — Argument for the function. (Input)

FORTRAN 90 Interface

Generic: ALNREL (X)
Specific: The specific interface names are S_ALNREL, D_ALNREL, and C_ALNREL.

FORTRAN 77 Interface
Single: ALNREL (X)
Double: The double precision name function is DLNREL.

Complex:The complex name is CLNREL.

Description

For real arguments, the function ALNREL(X) evaluates In(1 + x) for x > - 1. The argument x must be greater than -
1.0 to avoid evaluating the logarithm of zero or a negative number. In addition, x must not be so close to -1.0 that
considerable significance is lost in evaluating 1 + x.

For complex arguments, the function CLNREL(Z) evaluates In(1 + 2). The argument z must not be so close to - 1
that considerable significance is lost in evaluating 1 + z. If it is, a recoverable error is issued; however, z=- 1 is a
fatal error because In(1 + 2) is infinite. Finally, |z] must not overflow.

Letp=|z],z=x+iyand 2 =|1+2z|2=(1 +x)72 +y? =1+ 2x + p2. Now, if p is small, we may evaluate CLNREL (Z)
accurately by

25



Elementary Functions ALNREL

log(1+2z)= logr+iArg(z+1)
= 1/2 log r* + iArg(z + 1)
= 1/2 ALNREL(2x + p?) + iCARG(1 + 2)

Comments

Informational Error

Type Code Description

3 2 Result of ALNREL(X) is accurate to less than one-half precision because X
is too near - 1.0.

ALNREL evaluates the natural logarithm of (1 + X) accurate in the sense of relative error even when X is very
small. This routine (as opposed to the intrinsic ALOG) should be used to maintain relative accuracy whenever Xis
small and accurately known.

Examples

Example 1

In this example, In(1.189) = ALNREL(0.189) is computed and printed.

USE ALNREL_I NT
USE UMACH T NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

! Conput e
X = 0.189
VALUE = ALNREL( X)

! Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE

99999 FORVAT (' ALNREL(', F6.3, ') =', F6.3)
END

Output

ALNREL( 0.189) = 0.173

Example 2
In this example, In(0.0076/) = ALNREL(-1 + 0.0076/) is computed and printed.

USE UMACH_| NT
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USE ALNREL_I NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT
COVPLEX VALUE, Z
! Conput e
Z (-1.0, 0.0076)
VALUE = ALNREL(Z)
! Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) Z, VALUE
99999 FORMAT (' ALNREL((', F8.4, ',', F8.4, ")) =(', &
F8.4, ',', F8.4, ')")
END

Output

ALNREL(( -1.0000, 0.0076)) = ( -4.8796, 1.5708)
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Trigonometric and Hyperbolic

Functions

Routines

2.1 Trigonometric Functions

Evaluatestanzforcomplexz ........ ... ... i, TAN 30
Evaluatescotxforreal x....... ... i COoT 32
Evaluates sin xfor xarealangleindegrees........................ SINDG 35
Evaluates cos xfor xarealangleindegrees ...................... COosbG 37
Evaluates sin~! zfor [ole 1811 o] 1= -4 ASIN 39
Evaluates cos ™ z for complexz ... e ACOS 41
Evaluates tan™ z for complexz. ... e ATAN 43
Evaluates tan~1(x/y) for xand y COMPIEX . .« .« v veeee e ATAN2 45
2.2  Hyperbolic Functions
Evaluatessinhzforcomplexz.......... ... .. i ... SINH 47
Evaluatescoshzforcomplexz........... ... .. COSH 49
Evaluatestanhzforcomplexz ......... ... ... . .. TANH 571

2.3 Inverse Hyperbolic Functions

Evaluates sinh~! x for real or compleX X. ..ve e ASINH 53
Evaluates cosh ™ x for real or COMPIEX X « vttt ittt ieieannn ACOSH 55
Evaluates tanh ™! x for real or complexx .....ooiiiiiii i, ATANH 57
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Usage Notes

The complex inverse trigonometric hyperbolic functions are single-valued and regular in a slit complex plane. The

branch cuts are shown below for z=x + iy, i.e, x = Rz and y = 3z are the real and imaginary parts of z,
respectively.

¥
X X
—1] +1
sin~!z, cos~1z and tanh~1(z) tan~1z and sinh~1z

+1

cosh™lz

Figure 1, Branch Cuts for Inverse Trigonometric and Hyperbolic Functions
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TAN

This function extends FORTRAN's generic tan to evaluate the complex tangent.

Function Return Value

TAN — Complex function value. (Output)

Required Arguments

Z — Complex number representing the angle in radians for which the tangent is desired. (Input)

FORTRAN 90 Interface

Generic: TAN(Z)
Specific: The specific interface names are CTANand ZTAN.

FORTRAN 77 Interface
Complex: CTAN(2)

Double complex:The double complex function name is ZTAN.

Description

Letz=x + jy. If |cos z|? is very small, that is, if x is very close to T1/2 or 311/2 and if y is small, then tan z is nearly sin-

gular and a fatal error condition is reported. If |cos z|? is somewhat larger but still small, then the result will be
less accurate than half precision. When 2x is so large that sin 2x cannot be evaluated to any nonzero precision,
the following situation results. If |y| < 3/2, then CTAN cannot be evaluated accurately to better than one signifi-
cant figure. If 3/2 < |y| <-1/2 In €/2, then CTAN can be evaluated by ignoring the real part of the argument;
however, the answer will be less accurate than half precision. Here, € = AMACH4) is the machine precision.

Comments

Informational Error
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Type Code Description

3 2 Result of CTAN(Z) is accurate to less than one-half precision because the
real part of Z is too near T1/2 or 311/2 when the imaginary part of Z is
near zero or because the absolute value of the real part is very large and
the absolute value of the imaginary part is small.

Example
In this example, tan(1 + /) is computed and printed.

USE TAN_I NT
USE UMACH | NT

IMPLICI T NONE
1 Decl are vari abl es
| NTEGER NOUT
COVPLEX VALUE, Z
! Conput e
Z = (1.0, 1.0)
VALUE = TAN(2)
1 Print the results
CALL UVACH (2, NOUT)
WRI TE (NOUT, 99999) Z, VALUE
99999 FORMAT (' TAN((', F6.3, ',', F6.3, ")) = (', &
F6.3, ',', F6.3, ")")
END

Output

TAN(( 1.000, 1.000)) = ( 0.272, 1.084)
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COT

This function evaluates the cotangent.

Function Value Return

COT — Function value. (Output)

Required Arguments

X — Angle in radians for which the cotangent is desired. (Input)

FORTRAN 90 Interface

Generic: COT (X)
Spedcific: The specific interface names are COT, DCOT, CCOT, and ZCOT.

FORTRAN 77 Interface

Single: COT (X)
Double: The double precision function name is DCOT.
Complex: The complex name is CCOT.

Double Complex: The double complex name is ZCOT.

Description

For real x, the magnitude of x must not be so large that most of the computer word contains the integer part of x.
Likewise, x must not be too near an integer multiple of 1r, although x close to the origin causes no accuracy loss.
Finally, x must not be so close to the origin that COT(X) = 1/x overflows.

For complex arguments, let z = x + jiy. If |sin z|2 is very small, that is, if x is very close to a multiple of Tt and if |y] is

small, then cot z is nearly singular and a fatal error condition is reported. If |sin z| is somewhat larger but still
small, then the result will be less accurate than half precision. When |2x| is so large that sin 2x cannot be evalu-
ated accurately to even zero precision, the following situation results. If |y| < 3/2, then CCOT cannot be evaluated

32



Trigonometric and Hyperbolic Functions COT

accurately to be better than one significant figure. If 3/2 <|y| <- 1/2 In &/2, where € = AMACH4) is the machine

precision, then CCOT can be evaluated by ignoring the real part of the argument; however, the answer will be less

accurate than half precision. Finally, |z| must not be so small that cot z = 1/z overflows.

Comments

1. Informational error for Real arguments

Type Code Description

3 2 Result of COT(X) is accurate to less than one-half precision because
ABS(X) is too large, or Xis nearly a multiple of TT.

2. Informational error for Complex arguments

Type Code Description

3 2 Result of CCOT(Z) is accurate to less than one-half precision because the
real part of Z is too near a multiple of T when the imaginary part of Z is
zero, or because the absolute value of the real part is very large and the
absolute value of the imaginary part is small.

3. Referencing COT(X) is not the same as computing 1.0/TAN(X) because the error conditions are quite
different. For example, when Xis near 1/2, TAN(X) cannot be evaluated accurately and an error mes-

sage must be issued. However, COT(X) can be evaluated accurately in the sense of absolute error.

Examples

Example 1

In this example, cot(0.3) is computed and printed.

USE COT_I NT
USE UMACH_| NT

IMPLICI T NONE
! Decl are vari abl es

I NTEGER NOUT

REAL VALUE, X

! Conmput e
X = 0.3
VALUE = COT( X)

! Print the results
CALL UMACH (2, NQOUT)
VWRI TE (NOUT, 99999) X, VALUE

99999 FORMAT (' COT(', F6.3, ') ="', F6.3)
END
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Output

CoT( 0.300) = 3.233

Example 2

In this example, cot(1 + /) is computed and printed.

USE COT_I NT
USE UMACH_| NT

IMPLICIT NONE
! Decl are vari abl es
| NTEGER NOUT
COVPLEX VALUE, Z
! Conmput e
z = (1.0, 1.0)
VALUE = COT(2)
! Print the results
CALL UMACH (2, NauT)
VRI TE ( NOUT, 99999) Z, VALUE
99999 FORMAT (' COI((', F6.3, ',', F6.3, ")) = (',
F6.3, ',', F6.3, ")")
END

Output

COT(( 1.000, 1.000)) = ( 0.218, -0.868)
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SINDG

This function evaluates the sine for the argument in degrees.

Function Return Value

SINDG — Function value. (Output)

Required Arguments

X — Argument in degrees for which the sine is desired. (Input)

FORTRAN 90 Interface

Generic: S| NDG(X)
Spedcific: The specific interface names are S_SI NDGand D_SI NDG

FORTRAN 77 Interface

Single: S| NDG(X)
Double: The double precision function name is DSI NDG
Description

To avoid unduly inaccurate results, the magnitude of x must not be so large that the integer part fills more than
the computer word. Under no circumstances is the magnitude of x allowed to be larger than the largest repre-
sentable integer because complete loss of accuracy occurs in this case.

Example
In this example, sin 45° is computed and printed.

USE SI NDG_| NT
USE UMACH_| NT

IMPLICIT NONE
! Decl are vari abl es

I NTEGER NOUT
REAL VALUE, X
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! Conput e
X 45.0
VALUE = S| NDE X)
! Print the results
CALL UMACH (2, NaouTt)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' SIN(', F6.3, ' deg) =
END

', F6.3)

Output

SI N(45. 000 deg) = 0. 707.

36



Trigonometric and Hyperbolic Functions COSDG

COSDG

This function evaluates the cosine for the argument in degrees.

Function Return Value

COSDG — Function value. (Output)

Required Arguments

X — Argument in degrees for which the cosine is desired. (Input)

FORTRAN 90 Interface

Generic: COSDG(X)
Spedcific: The specific interface names are S_COSDGand D_COSDG

FORTRAN 77 Interface

Single: COSDG(X)
Double: The double precision function name is DCOSDG
Description

To avoid unduly inaccurate results, the magnitude of x must not be so large that the integer part fills more than
the computer word. Under no circumstances is the magnitude of x allowed to be larger than the largest repre-
sentable integer because complete loss of accuracy occurs in this case.

Example
In this example, cos 100° computed and printed.

USE COSDG | NT
USE UMACH_ | NT

IMPLICIT NONE
! Decl are vari abl es

I NTEGER NOUT
REAL VALUE, X
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! Conput e
X 100.0
VALUE = COSDE X)
! Print the results
CALL UMACH (2, NaouTt)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' COS(', F6.2, ' deg) =
END

', F6.3)

Output

COS(100. 00 deg) = -0.174
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ASIN

This function extends FORTRAN's generic ASI N function to evaluate the complex arc sine.

Function Return Value

ASIN — Complex function value in units of radians and the real part in the first or fourth quadrant.
(Output)

Required Arguments

ZINP — Complex argument for which the arc sine is desired. (Input)

FORTRAN 90 Interface

Generic: ASI N (ZI NP)
Specific: The specific interface names are CASI Nand ZASI N

FORTRAN 77 Interface

Complex: CASI N (ZI NP)
Double complex: The double complex function name is ZASI N

Description

Almost all arguments are legal. Only when |z| > b/2 can an overflow occur. Here, b = AMACH2) is the largest float-
ing point number. This error is not detected by ASI N.

See Pennisi (1963, page 126) for reference.

Example
In this example, sin”'(1 - i) is computed and printed.

USE ASI N_I NT
USE UMACH | NT

IMPLICIT  NONE

39



Trigonometric and Hyperbolic Functions ASIN

| NTEGER NOUT

Decl are vari abl es

COWPLEX VALUE, Z

z
VALUE = ASI N( 2)

CALL UMACH (2,

Conmput e

(1.0, -1.0)

Print the results
NOUT)

WRI TE (NOUT, 99999) Z, VALUE
99999 FORMAT (' ASIN((', F6.3, ',', F6.3, ')) = (',
F )

6.3, ',',
END

Output

ASIN(( 1.000, - 1. 000))

F6.3, ')

= ( 0.666,-1.061)

&
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ACOS

This function extends FORTRAN's generic ACOS function to evaluate the complex arc cosine.

Function Return Value

ACOS — Complex function value in units of radians with the real part in the first or second quadrant.
(Output)

Required Arguments

Z — Complex argument for which the arc cosine is desired. (Input)

FORTRAN 90 Interface

Generic: ACCS (2)
Specific: The specific interface names are CACOS and ZACOS.

FORTRAN 77 Interface

Complex: CACOCS (2)
Double complex: The double complex function name is ZACOS.

Description

Almost all arguments are legal. Only when |z| > b/2 can an overflow occur. Here, b = AMACH2) is the largest float-
ing point number. This error is not detected by ACOS.

Example
In this example, cos (1 - i)is computed and printed.
USE ACOS | NT

USE UMACH | NT

IMPLICIT NONE

! Decl are vari abl es
| NTEGER NOUT
COVPLEX VALUE, Z
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ACOS

Z
VALUE

(1.0, -
ACOS( 2)

CALL UMACH (2,

1.0)

NOUT)

Conput e

Print the results

VWRI TE (NQUT, 99999) Z, VALUE

99999 FORMAT (' ACOS(
F6.3, ',',
END

Output

ACCS(( 1.000, - 1. 000))

(', F6.3,
F6.3, ')')

= ( 0.905,

', F6.3, ")) = (',

1.061)

&
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ATAN

This function extends FORTRAN's generic function ATANto evaluate the complex arc tangent.

Function Return Value

ATAN — Complex function value in units of radians with the real part in the first or fourth quadrant.
(Output)

Required Arguments

Z — Complex argument for which the arc tangent is desired. (Input)

FORTRAN 90 Interface

Generic: ATAN (Z)
Specific: The specific interface names are CATANand ZATAN

FORTRAN 77 Interface
Complex:CATAN ( Z)

Double complex:The double complex function name is ZATAN.

Description

The argument z must not be exactly =/, because tan™ ' zis undefined there. In addition, z must not be so close to
+/ that substantial significance is lost.

Comments

Informational error

Type Code Description

3 2 Result of ATAN(Z) is accurate to less than one-half precision because |22|
is too close to - 1.0.
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Example

In this example, tan” '(0.01 - 0.01/) is computed and printed.

USE ATAN | NT
USE UMACH | NT

IMPLICIT NONE
! Decl are vari abl es
| NTEGER NOUT
COVPLEX VALUE, Z
! Conmput e
Z (0.01, 0.01)
VALUE = ATAN(Z)
! Print the results
CALL UMACH (2, NauT)
VRI TE ( NOUT, 99999) Z, VALUE
99999 FORMAT (' ATAN((', F6.3, ',', F6.3, ")) = (',
F6.3, ',', F6.3, ")")
END

Output

ATAN(( 0.010, 0.010)) = ( 0.010, 0.010)
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ATANZ2

This function extends FORTRAN's generic function ATANZ to evaluate the complex arc tangent of a ratio.

Function Return Value

ATAN2 — Complex function value in units of radians with the real part between -1t and 1. (Output)

Required Arguments
CSN — Complex numerator of the ratio for which the arc tangent is desired. (Input)

CCS — Complex denominator of the ratio. (Input)

FORTRAN 90 Interface

Generic; ATAN2 (CSN, CCS)
Spedcific: The specific interface names are CATAN2 and ZATANZ.

FORTRAN 77 Interface

Complex: CATAN2 ( CSN CCS)
Double complex: The double complex function name is ZATAN2.

Description

Let z; = CSNand z, = CCS. The ratio z = z;/z, must not be =i because tan™ ' (/) is undefined. Likewise, z; and z,
should not both be zero. Finally, z must not be so close to £/ that substantial accuracy loss occurs.

Comments

The result is returned in the correct quadrant (modulo 2 ).

Example

In this example,
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3 (1/2)+(i/2)
tan1 D

is computed and printed.

USE ATAN2_| NT
USE UMACH_| NT

IMPLICI T NONE

! Decl are vari abl es
| NTEGER NOUT
COVPLEX VALUE, X, Y

! Conput e
X = (2.0, 1.0)
Y = (0.5, 0.5)
VALUE = ATAN2(Y, X)

! Print the results

CALL UMACH (2, NOUT)

WRI TE (NOUT, 99999) Y, X, VALUE
99999 FORMAT (' ATAN2((', F6.3, ',', F6.3, '), (', F6.3, ',', F6.3,&
y) = (', F6.3, ',', F6.3, ')")

END

Output

ATAN2(( 0.500, 0.500), ( 2.000, 1.000)) = ( 0.294, 0.092)
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SINH

This function extends FORTRAN's generic function SINH to evaluate the complex hyperbolic sine.

Function Return Value

SINH — Complex function value. (Output)

Required Arguments

Z — Complex number representing the angle in radians for which the complex hyperbolic sine is desired.

(Input)

FORTRAN 90 Interface

Generic; S| NH(2)
Specific: The specific interface names are CSI NHand ZSI NH.

FORTRAN 77 Interface

Complex: CSINH (2)
Double complex: The double complex function name is ZSI NH.

Description

The argument z must satisfy

| 3zl <1/Ve

where € = AMACH4) is the machine precision and 3z is the imaginary part of z.

Example
In this example, sinh(5 - /) is computed and printed.

USE SI NH_I NT
USE UMACH_| NT
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IMPLICI T NONE
1 Decl are vari abl es
| NTEGER NOUT
COVPLEX VALUE, Z
! Conput e
Z (5.0, -1.0)
VALUE = SI NH(2)
! Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) Z, VALUE
99999 FORMAT (' SINH((', F6.3, ',', F6.3, ")) = (',&
F7.3, ',', F7.3, ')")

END

Output

SINH(( 5.000, -1.000)) = ( 40.092, - 62. 446)
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COSH

The function extends FORTRAN's generic function COSHto evaluate the complex hyperbolic cosine.

Function Return Value

COSH — Complex function value. (Output)

Required Arguments

Z — Complex number representing the angle in radians for which the hyperbolic cosine is desired.
(Input)

FORTRAN 90 Interface

Generic: CCSH(2)
Specific: The specific interface names are CCOSHand ZCOSH

FORTRAN 77 Interface
Complex: CCCSH( 2)
Double complex: The double complex function name is ZCOSH.

Description

Let € = AMACH(4) be the machine precision. If [3z| is larger than

1/ve

then the result will be less than half precision, and a recoverable error condition is reported. If |3z| is larger than
1/g, the result has no precision and a fatal error is reported. Finally, if |Rz| is too large, the result overflows and a
fatal error results. Here, Rz and 3z represent the real and imaginary parts of z, respectively.

Example

In this example, cosh(- 2 + 2/) is computed and printed.
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USE COSH_I NT
USE UMACH | NT

IMPLICI T NONE
1 Decl are vari abl es
| NTEGER NOUT
COVPLEX VALUE, Z
! Conput e
z (-2.0, 2.0)
VALUE = COSH(2)
! Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) Z, VALUE
99999 FORMAT (' COSH((', F6.3, ',', F6.3, ")) = (',&
F6.3, ',', F6.3, ')")

END

Output

COSH( (- 2. 000, 2.000)) = (-1.566, -3.298)
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TANH

This function extends FORTRAN's generic function TANHto evaluate the complex hyperbolic tangent.

Function Return Value

TANH — Complex function value. (Output)

Required Arguments

Z — Complex number representing the angle in radians for which the hyperbolic tangent is desired.
(Input)

FORTRAN 90 Interface

Generic: TANH (Z)
Specific: The specific interface names are CTANHand ZTANH.

FORTRAN 77 Interface

Complex: CTANH ( 2)
Double complex: The double complex function name is ZTANH.

Description

Letz =x + iyy. If |cosh z|? is very small, that is, if y mod T is very close to /2 or 31/2 and if x is small, then tanh z is

nearly singular; a fatal error condition is reported. If |cosh z|? is somewnhat larger but still small, then the result
will be less accurate than half precision. When 2y (z = x + iy) is so large that sin 2y cannot be evaluated accurately
to even zero precision, the following situation results. If |x| < 3/2, then TANH cannot be evaluated accurately to
better than one significant figure. If 3/2 <|y| <-1/2 In (¢/2), then TANH can be evaluated by ignoring the imagi-
nary part of the argument; however, the answer will be less accurate than half precision. Here, e = AMACH(4) is
the machine precision.

Example

In this example, tanh(1 + /) is computed and printed.
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USE TANH_| NT
USE UMACH | NT

IMPLICI T NONE
1 Decl are vari abl es
| NTEGER NOUT
COVPLEX VALUE, Z
! Conput e
Z (1.0, 1.0)
VALUE TANH( Z2)
! Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) Z, VALUE
99999 FORMAT (' TANH((', F6.3, ',', F6.3, ")) = (',&
F6.3, ',', F6.3, ')")

END

Output

TANH(( 1.000, 1.000)) = ( 1.084, 0.272)
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ASINH

This function evaluates the arc hyperbolic sine.

Function Return Value

ASINH — Function value. (Output)

Required Arguments

X — Argument for which the arc hyperbolic sine is desired. (Input)

FORTRAN 90 Interface

Generic: ASI NH (X)
Spedcific: The specific interface names are ASI NH, DASI NH CASI NH, and ZASI NH

FORTRAN 77 Interface

Single: ASI NH (X)
Double: The double precision function name is DASI NH.
Complex: The complex name is CASI NH.

Double Complex: The double complex name is ZASI NH.

Description

The function ASI NH( X) computes the inverse hyperbolic sine of x, sinh™ 'x.

For complex arguments, almost all arguments are legal. Only when |z| > b/2 can an overflow occur, where
b =AMACH( 2) is the largest floating point number. This error is not detected by ASI NH.

Examples

Example 1

In this example, sinh™ '(2.0) is computed and printed.
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USE ASI NH_| NT
USE UVACH_I NT

IMPLICIT NONE
! Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

! Conput e
X =20
VALUE = ASI NH( X)

! Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE

99999 FORVAT (' ASINH(', F6.3, ') ="', F6.3)
END

Output

ASINH( 2.000) = 1.444

Example 2
In this example, sinh™ (- 1 + /) is computed and printed.

USE ASI NH_| NT
USE UVACH_I NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT
COVPLEX VALUE, Z
! Conput e
Z (-1.0, 1.0
VALUE = ASI NH(2)
! Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) Z, VALUE
99999 FORMAT (' ASINH((', F6.3, ',', F6.3, ")) = (', &
F6.3, ',', F6.3, ')")

END

Output

ASI NH((-1. 000, 1.000)) = (-1.061, 0.666)
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ACOSH

This function evaluates the arc hyperbolic cosine.

Function Return Value

ACOSH — Function value. (Output)

Required Arguments

X — Argument for which the arc hyperbolic cosine is desired. (Input)

FORTRAN 90 Interface

Generic: ACOSH (X)
Spedcific: The specific interface names are ACOSH, DACOSH CACOSH, and ZACOSH.

FORTRAN 77 Interface

Single: ACOSH (X)
Double: The double precision function name is DACOSH.
Complex: The complex name is CACOSH.

Double Complex: The double complex name is ZACOSH.

Description

The function ACOSH(X) computes the inverse hyperbolic cosine of x, cosh™ 'x.

For complex arguments, almost all arguments are legal. Only when |z| > b/2 can an overflow occur, where
b = AMACH2) is the largest floating point number. This error is not detected by ACOSH.

Comments

The result of ACOSHX) is returned on the positive branch. Recall that, like SQRT(X), ACOSH(X) has multiple
values.

55



Trigonometric and Hyperbolic Functions ACOSH

Examples

Example 1
In this example, cosh™ (1.4) is computed and printed.

USE ACCSH_| NT
USE UMACH_| NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

! Conput e
X =1.4
VALUE = ACGCSH( X)

! Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE

99999 FORMAT (' ACOSH(', F6.3, ') ="', F6.3)
END

Output

ACCSH( 1.400) = 0.867

Example 2
In this example, cosh™ (1 - i) is computed and printed.

USE ACCSH_| NT
USE UMACH_| NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT
COVPLEX VALUE, Z
! Conput e
Z (1.0, -1.0)
VALUE ACOSH( 2)
1 Print the results
CALL UVACH (2, NOUT)
WRI TE (NOUT, 99999) Z, VALUE
99999 FORMAT (' ACOSH((', F6.3, ',', F6.3, ")) = (', &
F6.3, ',', F6.3, ')")

END

Output

ACOSH(( 1. 000,-1.000)) = (-1.061, 0.905)
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ATANH

This function evaluates the arc hyperbolic tangent.

Function Return Value

ATANH — Function value. (Output)

Required Arguments

X — Argument for which the arc hyperbolic tangent is desired. (Input)

FORTRAN 90 Interface

Generic: ATANH (X)
Specific: The specific interface names are ATANH, DATANH, CATANH, and ZATANH

FORTRAN 77 Interface

Single: ATANH (X)
Double: The double precision function name is DATANH.
Complex: The complex name is CATANH,

Double Complex: The double complex name is ZATANH.

Description

ATANH( X) computes the inverse hyperbolic tangent of x, tanh™ 'x. The argument x must satisfy

x| <1—-+e

where € = AMACH4) is the machine precision. Note that |x| must not be so close to one that the result is less
accurate than half precision.

Comments

Informational Error
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Type Code Description

3 2 Result of ATANH(X) is accurate to less than one-half precision because the
absolute value of the argument is too close to 1.0.

Examples

Example 1
In this example, tanh™ (- 1/4) is computed and printed.

USE ATANH_| NT
USE UMACH_I NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

! Conput e
X = -0.25
VALUE = ATANH( X)

! Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE

99999 FORVAT (' ATANH(', F6.3, ') ="', F6.3)
END

Output

ATANH( - 0. 250) = - 0. 255

Example 2
In this example, tanh™ '(1/2 + i/2) is computed and printed.

USE ATANH | NT
USE UMACH_| NT

IMPLICI T NONE
1 Decl are vari abl es
| NTEGER NOUT
COVPLEX VALUE, Z
1 Conmput e
z (0.5, 0.5)
VALUE ATANH( 2)
! Print the results
CALL UMACH (2, NQOUT)
WRI TE ( NOUT, 99999) Z, VALUE
99999 FORMVAT (' ATANH((', F6.3, ',', F6.3, ')) = (', &
F6.3, ',', F6.3, ')")

END
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Output

ATANH(( 0.500, 0.500)) = ( 0.402, 0.554)
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Exponential Integrals and Related

Functions

Routines

Evaluates the exponentialintegral, Ei(x) ........... ... ... .. .. ........ El 62
Evaluates the exponentialintegral, Eq(x) . .. ... ooviiiiiii .. E1 64
Evaluates the scaled exponential integrals, integer order, E,(x) . . . ...... ENE 66
Evaluates the logarithmicintegral, li(x) ............... ... ... ... ... ALl 68
Evaluates the sineintegral, Si(x) . .. ... oot e Sl 71
Evaluates the cosineiintegral, Ci(x). . ... ... it cl 73
Evaluates the cosine integral (alternate definition) .. .................. CIN 75
Evaluates the hyperbolic sineintegral, Shi(x) ........................ SHI 77
Evaluates the hyperbolic cosine integral, Chi(x) . . .................... CHI 79
Evaluates the hyperbolic cosine integral (alternate definition) ......... CINH 87
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Usage Notes

The notation used in this chapter follows that of Abramowitz and Stegun (1964).

The following is a plot of the exponential integral functions that can be computed by the routines described in
this chapter.

Function
EI El_

| e* E3

S0 trrrrrrrrrr T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 2, Plot of e*E(x), E; (x) and Ei(x)
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El

This function evaluates the exponential integral for arguments greater than zero and the Cauchy principal value
for arguments less than zero.

Function Return Value

El — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: El (X)
Specific: The specific interface names are S_El and D_EI .

FORTRAN 77 Interface

Single: El (X
Double: The double precision function name is DEI .
Description

The exponential integral, Ei(x), is defined to be
00
E\(x) :J‘ e '/tdt for x#0
X

The argument x must be large enough to insure that the asymptotic formula €¥/x does not underflow, and x must

not be so large that e* overflows.

Comments

If principal values are used everywhere, then for all X, El (X) = - E1(- X) and E1(X) = - El (- X).
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Example
In this example, Ei(1.15) is computed and printed.

USE EI _INT
USE UMACH | NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

! Conput e
X = 1.15
VALUE = El (X)

! Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE

99999 FORMAT (' EI(', F6.3, ') ="', F6.3)
END

Output

El( 1.150) = 2.304
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El

This function evaluates the exponential integral for arguments greater than zero and the Cauchy principal value

of the integral for arguments less than zero.

Function Return Value

E1 — Function value. (Output)

Required Arguments

X — Argument for which the integral is to be evaluated. (Input)

FORTRAN 90 Interface

Generic: El (X)
Specific: The specific interface names are S_E1 and D_E1.

FORTRAN 77 Interface

Single: El (X
Double: The double precision function name is DE1.
Description

The alternate definition of the exponential integral, £4(x), is

00
E (x) =J. e'/tdt for x#0
X
The path of integration must exclude the origin and not cross the negative real axis.

The argument x must be large enough that e™* does not overflow, and x must be small enough to insure that

e */x does not underflow.
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Comments

Informational Error

Type Code Description
3 2 The function underflows because Xis too large.
Example

In this example, £; (1.3) is computed and printed.

USE E1_INT
USE UMACH | NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

! Conmput e
X =1.3
VALUE = E1(X)

! Print the results
CALL UMACH (2, NOUT)
VRI TE ( NOUT, 99999) X, VALUE

99999 FORMAT (' E1(', F6.3, ') ="', F6.3)
END

Output

E1( 1.300) = 0.135
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ENE

Evaluates the exponential integral of integer order for arguments greater than zero scaled by EXP(X).

Required Arguments

X — Argument for which the integral is to be evaluated. (Input)
It must be greater than zero.

N — Integer specifying the maximum order for which the exponential integral is to be calculated. (Input)

F — Vector of length N containing the computed exponential integrals scaled by EXP(X). (Output)

FORTRAN 90 Interface

Generic: CALL ENE (X, N F)
Specific: The specific interface names are S_ENE and D_ENE.

FORTRAN 77 Interface

Single: CALL ENE (X, N F)
Double: The double precision function name is DENE.
Description

The scaled exponential integral of order n, £,,(x), is defined to be

o]

E,(x)= exjex’t”dt for x >0
1

The argument x must satisfy x > 0. The integer n must also be greater than zero. This code is based on a code due
to Gautschi (1974).

Example

In this example, £,(10) for n =1, ..., nis computed and printed.
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USE ENE_| NT
USE UVACH_I NT

IMPLICIT NONE

! Decl are vari abl es
| NTEGER N
PARAMETER ( N=10)

| NTEGER K, NOUT
REAL F(N), X
! Conmput e
X =10.0
CALL ENE (X, N, F)
! Print the results
CALL UMACH (2, NQUT)
DO 10 K=1, N
WRI TE (NOUT, 99999) K, X, F(K)

10 CONTI NUE
99999 FORMAT (* Esub ', 12, ' (', F6.3, ') ="', F6.3)
END
Output
E sub 1 (10.000) = 0.092
E sub 2 (10.000) = 0.084
E sub 3 (10.000) = 0.078
E sub 4 (10.000) = 0.073
E sub 5 (10.000) = 0.068
E sub 6 (10.000) = 0.064
E sub 7 (10.000) = 0.060
E sub 8 (10.000) = 0.057
E sub 9 (10.000) = 0.054
E sub 10 (10.000) = 0.051
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AL

This function evaluates the logarithmic integral.

Function Return Value

ALl — Function value. (Output)

Required Arguments

X — Argument for which the logarithmic integral is desired. (Input)
It must be greater than zero and not equal to one.

FORTRAN 90 Interface

Generic: ALl (X)
Specific: The specific interface names are S_ALIl and D_ALI .

FORTRAN 77 Interface

Single: ALl (X)
Double: The double precision function name is DALI .
Description

The logarithmic integral, li(x), is defined to be
X
li(x) =~ | 9 forx>0andx#1
oln ¢

The argument x must be greater than zero and not equal to one. To avoid an undue loss of accuracy, x must be
different from one at least by the square root of the machine precision.

The function li(x) approximates the function Tr(x), the number of primes less than or equal to x. Assuming the Rie-
mann hypothesis (all non-real zeros of g(z) are on the line Rz = 1/2), then

1i(x> —n(x) = O<\/;ln x>
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&0

30

A Funection

li(z) -
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Figure 3, Plot of li(x) and 1r(x)
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Comments

Informational Error

Type
3

Example

Code
2

Description

Result of ALI (X) is accurate to less than one-half precision because Xis

too close to 1.0.

In this example, li(2.3) is computed and printed.

USE ALI

I NT

USE UMACH | NT

I MPLICI T

I NTEGER
REAL

X
VALUE

NONE

NOUT
VALUE, X

2.3
ALI ( X)

Decl are vari abl es

Conput e
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ALl

CALL UMACH (2, NOUT)

WRI TE (NOUT, 99999) X, VALUE

99999 FORMAT (' ALI(', F6.3, ')
END

Output

ALI( 2.300) = 1.439

Print the results

", F6.3)
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S

This function evaluates the sine integral.

Function Return Value

SI — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: Sl (X)

Spedcific: The specific interface names are S_SI and D_SI .

FORTRAN 77 Interface

Single: Sl (X)
Double: The double precision function name is DSI .
Description

The sine integral, Si(x), is defined to be

Si(x) = fo%dz

lx| > 1/+e

the answer is less accurate than half precision, while for |x| > 1 /g, the answer has no precision. Here,

€ = AMACH(4) is the machine precision.
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Example
In this example, Si(1.25) is computed and printed.

USE SI _INT
USE UMACH | NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

! Conput e
X =1.25
VALUE = SI (X)

! Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE

99999 FORMAT (' SI(', F6.3, ') ="', F6.3)
END

Output

SI( 1.250) = 1.146
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Cl

This function evaluates the cosine integral.

Function Return Value

Cl — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
It must be greater than zero.

FORTRAN 90 Interface

Generic; Cl X
Specific: The specific interface names are S_Cl and D_ClI .

FORTRAN 77 Interface

Single: c X
Double: The double precision function name is DCI .
Description

The cosine integral, Ci(x), is defined to be

X

Cix) =y +In(x) + | €511

Where y = 0.57721566 is Euler's constant.

The argument x must be larger than zero. If

x>1/e

then the result will be less accurate than half precision. If x > 1/¢, the result will have no precision. Here,

€ = AMACH(4) is the machine precision.
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Example
In this example, Ci(1.5) is computed and printed.

USE C _INT
USE UMACH | NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

! Conput e
X =1.5
VALUE = Cl ( X)

! Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' CI(', F6.3, ') =
END

", F6.3)

Output

C( 1.500) = 0.470
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CIN

This function evaluates a function closely related to the cosine integral.

Function Return Value

CIN — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: Cl N(X)
Spedcific: The specific interface names are S_Cl Nand D_CI N,

FORTRAN 77 Interface

Single: Cl N(X)
Double: The double precision function name is DCI N,
Description

The alternate definition of the cosine integral, Cin(x), is

. _ | 1-cost
Cin(x) = _‘:fdt

For

0<Ilxl <vs

where s = AMACH(1) is the smallest representable positive number, the result underflows. For

lx| > 1/+e

the answer is less accurate than half precision, while for |x| > 1 /€, the answer has no precision. Here,

€ = AMACH(4) is the machine precision.
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Comments

Informational Error

Type Code Description
2 1 The function underflows because X is too small.
Example

In this example, Cin(2Tr) is computed and printed.

USE CI N_I NT
USE UMACH_| NT
USE CONST_| NT

IMPLICI T NONE
! Decl are vari abl es

| NTEGER NOUT

REAL VALUE, X
! Conmput e
X = CONST(' pi')
X =2.0* X
VALUE = CI N( X)

! Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE

99999 FORMAT (' CIN(', F6.3, ') ="', F6.3)
END

Output

CIN( 6.283) = 2.438
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SHI

This function evaluates the hyperbolic sine integral.

Function Return Value

SHI— Function value. (Output)
SHI equals

_[;sinh(t) [t dt

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: SHI (X)
Specific: The specific interface names are S_SHI and D_SHI .

FORTRAN 77 Interface

Single: SHI (X)
Double: The double precision function name is DSHI .
Description

The hyperbolic sine integral, Shi(x), is defined to be

Shi(x) = ﬂ%dz

The argument x must be large enough that e™*/x does not underflow, and x must be small enough that e* does
not overflow.
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Example
In this example, Shi(3.5) is computed and printed.

USE SHI _I NT
USE UMACH I NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

! Conput e
X = 3.5
VALUE = SH ( X)

! Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE

99999 FORMAT (' SHI(', F6.3, ') ="', F6.3)
END

Output

SH ( 3.500) = 6.966
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CHI

This function evaluates the hyperbolic cosine integral.

Function Return Value

CHI — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: CH (X)
Spedcific: The specific interface names are S_CHI and D_CHI .

FORTRAN 77 Interface

Single: CH (X)
Double: The double precision function name is DCHI .
Description

The hyperbolic cosine integral, Chi(x), is defined to be
X
Chi(x) = y+lnx+J. C(’Shft_ldt for x >0
0

where y =~ 0.57721566 is Euler's constant.

The argument x must be large enough that e™*/x does not underflow, and x must be small enough that e* does

not overflow.

Comments

When Xis negative, the principal value is used.
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Example
In this example, Chi(2.5) is computed and printed.

USE CHI _I NT
USE UMACH I NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

! Conput e
X = 2.5
VALUE = CHI ( X)

! Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE

99999 FORMAT (' CHI(', F6.3, ') ="', F6.3)
END

Output

CH (2.500) = 3.524
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CINH

This function evaluates a function closely related to the hyperbolic cosine integral.

Function Return Value

CINH — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: Cl NH(X)
Spedcific: The specific interface names are S_Cl NHand D_CI NH.

FORTRAN 77 Interface

Single: Cl NH(X)
Double: The double precision function name is DCl NH.
Description

The alternate definition of the hyperbolic cosine integral, Cinh(x), is

X
. _ | cosh¢—1
th(x) -[O—t dt
For

0 < |x| <2vs

where s = AMACH(1) is the smallest representable positive number, the result underflows. The argument x must

be large enough that e™*/x does not underflow, and x must be small enough that e* does not overflow.
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Comments

Informational Error

Type Code Description
2 1 The function underflows because X is too small.
Example

In this example, Cinh(2.5) is computed and printed.

USE CI NH_I NT
USE UMACH | NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT
REAL VALUE, X
! Conmput e
X 2.5
VALUE = ClI NH( X)
! Print the results
CALL UMACH (2, NOUT)
VR TE (NOUT, 99999) X, VALUE
99999 FORMAT (' CINH(', F6.3, ') ="', F6.3)
END

Output

CINH 2.500) = 2.031
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Gamma Function and Related

Functions

Routines

4.1

4.2

4.3

4.4

4.5

4.6

Factorial Function
Evaluatesthefactorial, n! ....... ... .o i FAC
Evaluates the binomial coefficient.. ... ........ ... ... ... ... ... BINOM

Gamma Function

Evaluates the real or complex gamma function, 2(x). . . ............ GAMMA
Evaluates the reciprocal of the real or complex gamma function, 1/ ?(x) GAMR
Evaluates the real or complex function, In 12(x)| .................. ALNGAM
Evaluates the log abs gamma functionanditssign................ ALGAMS

Incomplete Gamma Function
Evaluates the incomplete gamma function, 2(a,x) ................... GAM|

Evaluates the complementary incomplete gamma function, ?(a,x) .. GAMIC

Evaluates Tricomi’s incomplete gamma function, ?*(a, x) . ... ....... GAMIT
Psi Function

Evaluates the real or complex psifunction, 2(x) ...................... PSI

Evaluates the real psil function, 24(x) . . ... ... oev e PSI1

Pochhammer’s Function
Evaluates Pochhammer’s generalized symbol, (@), . ............... POCH
Evaluates Pochhammer’s symbol starting from the firstorder. . .. ... POCH1

Beta Function

Evaluates the real or complex beta function, ?(a,b) ................. BETA
Evaluates the log of the real or complex beta function, In ?(a,b). . . .. ALBETA
Evaluates the incomplete beta function, I.(a,b) ................... BETAI

85
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89
92
94
97

99
102
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106
109

111
113

115
118
121
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Usage Notes

The notation used in this chapter follows that of Abramowitz and Stegun (1964).

The following is a table of the functions defined in this chapter:

FAC n=Tn+1)
Bl NOM n/m(n-m),0<m=<n
GAMVA o
F(x) =l et dt, x#0, -1, -2,
GAMR 1/T(x)
ALNGAM InITE)l, x = 0, -1, -2, ...
ALGANVS In IF(x)l and sign I'(x), x = 0, -1, -2, ...
GAM

y(a,x) = f;t‘ﬂeﬁdt, a>0,x>0

M F(a,x) = Ijt“ilef’a’t, x>0

GAM T y*(a, x) = (" T(@)y(a,x), x = 0

PSI Yx)=T"x/Tx),x+0,-1,-2, ..

PSI1 Wq(x) =d¥dx? InT(x), x =0, -1, -2, ...

POCH (@) =T(a+x)/(a),ifa+x=0,-1,-2, ..thena must=0, -1, -2, ...
POCH1 (@), — D/x, ifa+x=0,-1,-2,..thenamust=0, -1, -2, ...

BETA B(xq, x2) = T(x1) T(x2)/ T(x1 + x2), x1 >0and x, >0

CBETA B(zq,25) = T(z1) T(20)/ T(z4 + 25), 2y >0 and z, > 0

ALBETA In B(a, b),a>0,b>0

BETAI I\(a, b) = By(a, b)/ B(a, b),0 <x<1,a>0,b>0
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FAC

This function evaluates the factorial of the argument.

Function Return Value

FAC — Function value. (Output)
See Comments.

Required Arguments

N — Argument for which the factorial is desired. (Input)

FORTRAN 90 Interface

Generic; FAC(N
Specific: The specific interface names are S_FACand D_FAC.

FORTRAN 77 Interface

Single: FAC(N)
Double: The double precision function name is DFAC.
Description

The factorial is computed using the relation n! = [(n + 1). The function '(x) is defined in GAMVA. The argument n
must be greater than or equal to zero, and it must not be so large that n! overflows. Approximately, n! overflows

when n"e™" overflows.

Comments

If the generic version of this function is used, the immediate result must be stored in a variable before use in
an expression. For example:

X = FAC(6)
Y = SQRT(X)
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must be used rather than
Y = SQRT(FAC(6)).

If this is too much of a restriction on the programmer, then the specific name can be used without this restric-
tion.

To evaluate the factorial for nonintegral values of the argument, the gamma function should be used. For large
values of the argument, the log gamma function should be used.

Example

In this example, 6! is computed and printed.

USE FAC_I NT
USE UMACH_| NT

IMPLICIT NONE
! Decl are vari abl es
| NTEGER N, NOUT

REAL VALUE

! Conmput e
N =6
VALUE = FAC(N)

! Print the results
CALL UMACH (2, NauT)
VRI TE (NOUT, 99999) N, VALUE

99999 FORMAT (' FAC(', 11, ') ="', F6.2)
END

Output

FAC(6) = 720.00
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BINOM

This function evaluates the binomial coefficient.

Function Return Value

BINOM — Function value. (Output)
See Comment 1.

Required Arguments

N — First parameter of the binomial coefficient. (Input)
N must be nonnegative.

M — Second parameter of the binomial coefficient. (Input)
Mmust be nonnegative and less than or equal to N,

FORTRAN 90 Interface

Generic: Bl NOM(N M
Specific: The specific interface names are S_BlI NOMand D_BI NOM

FORTRAN 77 Interface

Single: Bl NOM(N M
Double: The double precision function name is DBl NOM
Description

The binomial function is defined to be

with n = m = 0. Also, n must not be so large that the function overflows.
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Comments

1. If the generic version of this function is used, the immediate result must be stored in a variable
before use in an expression. For example:
X = BINOM 9, 5) Y = SQRT(X)
must be used rather than
Y = SQRT(BINOM 9, 5)).
If this is too much of a restriction on the programmer, then the specific name can be used without
this restriction.

2. To evaluate binomial coefficients for nonintegral values of the arguments, the complete beta func-
tion or log beta function should be used.

Example

In this example, (2) is computed and printed.

USE BI NOM | NT
USE UMACH_| NT

IMPLICIT NONE
! Decl are vari abl es
| NTEGER M N, NOUT

REAL VAL UE
! Conmput e
N =9
M =5
VALUE = BINOM N, M

! Print the results
CALL UMACH (2, NOUT)
VRl TE (NOUT, 99999) N, M VALUE

99999 FORMAT (' BINOM', 11, ',", 11, ') ="', F6.2)
END

Output

BINOM 9, 5) = 126.00
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GAMMA

This function evaluates the complete gamma function.

Function Return Value

GAMMA — Function value. (Output)

Required Arguments

X — Argument for which the complete gamma function is desired. (Input)

FORTRAN 90 Interface

Generic: GAMMA (X)
Spedcific: The specific interface names are S_GAMVA D_GAMVA, and C_GAMVA.

FORTRAN 77 Interface

Single: GAMVA (X)

Double: The double precision function name is DGAMVA.

Complex: The complex name is CGAMVA.
Description

The gamma function, I'(2), is defined to be

00
F(z) :J‘ 7 ledt for Rz>0
0
For R(z) <0, the above definition is extended by analytic continuation.

Z must not be so close to a negative integer that the result is less accurate than half precision. If R(2) is too small,
then the result will underflow. Users who need such values should use the log gamma function ALNGAM When
J(z) = 0, R(z) should be greater than x,,;, so that the result does not underflow, and R(z) should be less than

Xmax SO that the result does not overflow. X,,;, and x,,,, are available by

CALL ROGAM. (XM N, XMAX)
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Note that z must not be too far from the real axis because the result will underflow.

6.0

3.0

0.0

|
_E‘-C' I ] I | T I | T I T | I I ]
—4.0 —-2.0 0.0 2.0 4.0
xr
Figure 4, Plot of [(x) and 1/T(x)
Comments
Informational Errors

Type Code Description

2 3 The function underflows because X is too small.

3 2 Result is accurate to less than one-half precision because Xis too near a

negative integer.

Examples

Example 1
In this example, I(5.0) is computed and printed.

USE GAMVA | NT
USE UMACH_| NT
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IMPLICIT NONE
! Decl are vari abl es

I NTEGER NOUT

REAL VALUE, X

! Conmput e
X = 5.0
VALUE = GAMVA( X)

! Print the results
CALL UMACH (2, NOUT)
VRI TE (NOUT, 99999) X, VALUE

99999 FORMAT (' GAMVA(', F6.3, ') ="', F6.3)
END

Output

GAMVA( 5.000) = 24.000

Example 2

In this example, I(1.4 + 3j) is computed and printed.

USE GAMVA | NT
USE UMACH_| NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT
COVPLEX VALUE, Z
! Conmput e
z = (1.4, 3.0)
VALUE = GAMVA( Z)
! Print the results
CALL UMACH (2, NOUT)
VR TE (NOUT, 99999) Z, VALUE
99999 FORMAT (' GAMVA(', F6.3, ',', F6.3, ') = (',
F6.3, ',', F6.3, ')")
END

Output

GAMVA( 1.400, 3.000) = (-0.001, 0.061)
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GAMR

This function evaluates the reciprocal gamma function.

Function Return Value

GAMR — Function value. (Output)

Required Arguments

X — Argument for which the reciprocal gamma function is desired. (Input)

FORTRAN 90 Interface

Generic: GAMVR (X)
Spedcific: The specific interface names are S_GAMR D_GAMR and C_GAMR

FORTRAN 77 Interface

Single: GAMR (X)

Double: The double precision function name is DGAMR

Complex: The complex name is CGAVR
Description

The function GAMR computes 1/T(2). See GAMVA for the definition of I'(2).

For 3(z) = 0, zmust be larger than x,,;, so that 1/I'(z) does not underflow, and x must be smaller than X,,,, SO that

1/T(z) does not overflow. Symmetric overflow and underflow [imits x,,;,, and X4, are obtainable from

CALL ROGAM. (XM N, XMAX)
Note that z must not be too far from the real axis because the result will overflow there.

Comments

This function is well behaved near zero and negative integers.
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Examples

Example 1

In this example, 1/I(1.85) is computed and printed.

USE GAMR_| NT
USE UMACH_| NT

IMPLICIT  NONE
I NTEGER NOUT

Decl are vari abl es

REAL VALUE, X

! Conmput e
X = 1.85
VALUE = GAMR( X)

Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE

99999 FORVAT (' GAMR('
END

Output

GAVR( 1.850) = 1.058

Example 2

, F6.3, ') ="', F6.3)

In this example, In T(1.4 + 3/) is computed and printed.

USE GAMR | NT
USE UMACH | NT

IMPLICIT NONE
| NTEGER NOUT

Decl are vari abl es

COVPLEX VALUE, Z

z
VALUE = GAMR(Z)

Conmput e

(1.4, 3.0)

Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) Z, VALUE

99999 FORMAT (' GAMR("'

END

Output

GAMVR( 1.400, 3.000) =

, F6.3, ',', F6.3, ') = (', F7.3,

( -0.303, -16. 367)
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ALNGAM

The function evaluates the logarithm of the absolute value of the gamma function.

Function Return Value

ALNGAM — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: ALNGAM(X)
Specific: The specific interface names are S_ALNGAM D_ALNGAM and C_ALNGAM

FORTRAN 77 Interface

Single: ALNGAM(X)

Double: The double precision function name is DLNGAM

Complex: The complex name is CLNGAM
Description

The function ALNGAMcomputes In |T(x)|. See GAMVA for the definition of I'(x).

The gamma function is not defined for integers less than or equal to zero. Also, |x| must not be so large that the
result overflows. Neither should x be so close to a negative integer that the accuracy is worse than half precision.
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Figure 5, Plot of log|I(x)|
Comments
Informational Error
Type Code Description
3 2 Result of ALNGAMX) is accurate to less than one-half precision because X

is too near a negative integer.

Examples

Example 1

In this example, In |T(1.85)| is computed and printed.

USE ALNGAM | NT
USE UMACH I NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT
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REAL VALUE, X

! Conmput e
X = 1.85
VALUE = ALNGAM X)

! Print the results
CALL UMACH (2, NOUT)
VRI TE (NOUT, 99999) X, VALUE

99999 FORMAT (' ALNGAM', F6.3, ') ="', F6.3)
END

Output

ALNGAM 1.850) = -0.056

Example 2

In this example, In T(1.4 + 3/) is computed and printed.

USE ALNGAM | NT
USE UMACH I NT

IMPLICI T NONE
1 Decl are vari abl es
| NTEGER NOUT
COVPLEX VALUE, Z
1 Conmput e
z (1.4, 3.0)
VALUE = ALNGAM 2)
! Print the results
CALL UMACH (2, NQOUT)
VR TE (NOUT, 99999) Z, VALUE
99999 FORMAT (' ALNGAM', F6.3, ',', F6.3, ') = (', &
F6.3, ',', F6.3, ')")

END

Output

ALNGAM 1.400, 3.000) = (-2.795, 1.589)
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ALGAMS

Returns the logarithm of the absolute value of the gamma function and the sign of gamma.

Required Arguments

X — Argument for which the logarithm of the absolute value of the gamma function is desired. (Input)
ALGM — Result of the calculation. (Output)

S — Sign of gamma(X). (Output)
If gamma(X) is greater than or equal to zero, S=1.0. If gamma(X) is less than zero, S=-1.0.

FORTRAN 90 Interface

Generic: CALL ALGAMS (X, ALGM S)
Specific: The specific interface names are S_ALGAMS and D_AL GAVES.

FORTRAN 77 Interface

Single: CALL ALGAMS (X, ALGM S)
Double: The double precision function name is DLGAMS.
Description

The function ALGAMS computes In |T(x)| and the sign of I'(x). See GAMVA for the definition of ['(x).

The result overflows if |x| is too large. The accuracy is worse than half precision if x is too close to a negative
integer.

Comments

Informational Error

Type Code Description

3 2 Result of ALGAMS is accurate to less than one-half precision because Xis
too near a negative integer.
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Example

In this example, In |T(1.85)| and the sign of [(1.85) are computed and printed.

99998
99999

USE ALGAMS_I| NT
USE UMACH T NT

IMPLICI T NONE
Decl are vari abl es
| NTEGER NOUT
REAL VALUE, S, X
Conput e
X = 1.85
CALL ALGAMS(X, VALUE, S)
Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99998) X, VALUE

FORMAT (' Log Abs(Gamma(', F6.3, ')) ="', F6.3)
WRI TE (NOUT, 99999) X, S

FORMAT (' Sign(Gamma(', F6.3, ')) ="', F6.2)
END

Output

Log Abs(Ganmma( 1.850)) = -0.056

Si gn( Ganma( 1. 850))

1.00
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GAMI

This function evaluates the incomplete gamma function.

Function Return Value

GAMI — Function value. (Output)

Required Arguments

A — The integrand exponent parameter. (Input)
It must be positive.

X — The upper limit of the integral definition of GAM . (Input)
It must be nonnegative.

FORTRAN 90 Interface

Generic: GAM (A X)
Spedcific: The specific interface names are S_GAM and D_GAM .

FORTRAN 77 Interface

Single: GAM (A X)
Double: The double precision function name is DGAM .
Description

The incomplete gamma function is defined to be

y(ax) = JZt“_le_’dt for >0 and x >0

The function Y(a, x) is defined only for a greater than zero. Although y(a, x) is well defined for x >- oo, this algo-

rithm does not calculate y(a, x) for negative x. For large a and sufficiently large x, y(a, x) may overflow. y(a, x) is
bounded by I'(a), and users may find this bound a useful guide in determining legal values of a.
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Because logarithmic variables are used, a slight deterioration of two or three digits of accuracy will occur when
GAM s very large or very small.
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Figure 6, Contour Plot of y(a, x)

Example

In this example, Y(2.5, 0.9) is computed and printed.

USE GAM _I NT
USE UMACH | NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT

REAL A, VALUE, X
! Conmput e
A = 2.5
X =0.9
VALUE = GAM (A, X)

! Print the results
CALL UMACH (2, NOUT)
VWRI TE (NOUT, 99999) A, X, VALUE

99999 FORMAT (" GAM (', F6.3, ',', F6.3, ') ="', F6.4)
END
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Output

GAM ( 2.500, 0.900) = 0.1647
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GAMIC

Evaluates the complementary incomplete gamma function.

Function Return Value

GAMIC — Function value. (Output)

Required Arguments
A — The integrand exponent parameter as per the remarks. (Input)

X — The upper limit of the integral definition of GAM C. (Input)
If Ais positive, then X must be positive. Otherwise, X must be nonnegative.

FORTRAN 90 Interface

Generic: GAM C(A X)
Specific: The specific interface names are S_GAM Cand D_GAM C.

FORTRAN 77 Interface

Single: GAM C(A X)
Double: The double precision function name is DGAM C.
Description

The incomplete gamma function is defined to be

F(a,x) =J- et
X

The only general restrictions on g are that it must be positive if x is zero; otherwise, it must not be too close to a
negative integer such that the accuracy of the result is less than half precision. Furthermore, (g, x) must not be
so small that it underflows, or so large that it overflows. Although I(a, x) is well defined for x >- o0 and g > 0, this
algorithm does not calculate (g, x) for negative x.

The function GAM Cis based on a code by Gautschi (1979).
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Comments

Informational Error

Type Code Description

3 2 Result of GAM C(A, X) is accurate to less than one-half precision because
Ais too near a negative integer.

Example
In this example, (2.5, 0.9) is computed and printed.

USE GAM C_| NT
USE UMACH_ | NT

IMPLICI T NONE
! Decl are vari abl es

| NTEGER NOUT
REAL A, VALUE, X
! Conmput e
A = 2.5
X =0.9
VALUE = GAM C(A, X)

! Print the results
CALL UMACH (2, NOUT)
VWRI TE (NOUT, 99999) A, X, VALUE

99999 FORMAT (' GAM C(', F6.3, ',', F6.3, ') ="', F6.4)
END

Output

GAM C( 2.500, 0.900) = 1.1646
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GAMIT

This function evaluates the Tricomi form of the incomplete gamma function.

Function Return Value

GAMIT — Function value. (Output)

Required Arguments
A — The integrand exponent parameter as per the comments. (Input)

X — The upper limit of the integral definition of GAM T. (Input)
It must be nonnegative.

FORTRAN 90 Interface

Generic: GAM T (A X)
Specific: The specific interface names are S_GAM T and D_GAM T.

FORTRAN 77 Interface

Single: GAM T (A X)
Double: The double precision function name is DGAM T.
Description

The Tricomi's incomplete gamma function is defined to be

x % (ax) -

y* (ax) = OB ’Z_Z)J‘xt"le’dt

where Y(a, x) is the incomplete gamma function. See GAM for the definition of y(a, x).

The only general restriction on ¢ is that it must not be too close to a negative integer such that the accuracy of
the result is less than half precision. Furthermore, |y *(a, x)l must not underflow or overflow. Although y*(a, X) is

well defined for x >- oo, this algorithm does not calculate y*(a, x) for negative x.
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A slight deterioration of two or three digits of accuracy will occur when GAM T is very large or very small in abso-
lute value because logarithmic variables are used. Also, if the parameter a is very close to a negative integer (but
not quite a negative integer), there is a loss of accuracy which is reported if the result is less than half machine

precision.

The function GAM T is based on a code by Gautschi (1979).

Comments

Informational Error

Type Code Description

3 2 Result of GAM T(A, X) is accurate to less than one-half precision because

Ais too close to a negative integer.

Example

In this example, Y*(3.2, 2.1) is computed and printed.

USE GAM T_I NT
USE UMACH_| NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT

REAL A, VALUE, X
! Conmput e
A = 3.2
X =21
VALUE = GAM T(A, X)

! Print the results
CALL UMACH (2, NOUT)
VRI TE (NOUT, 99999) A, X, VALUE

99999 FORMAT (' GAM T(', F6.3, ',', F6.3, ') ="', F6.4)
END

Output

GAM T( 3.200, 2.100) = 0.0284
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PSI

This function evaluates the derivative of the log gamma function.

Function Return Value

PSI — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: PSI (X)
Spedcific: The specific interface names are S_PSI, D_PSI , and C_PSI .

FORTRAN 77 Interface

Single: PSI (X)

Double: The double precision function name is DPSI .

Complex: The complex name is CPSI .
Description

The psi function, also called the digamma function, is defined to be

I'(x)
r(x)

d
\|I(x> = %lnr(x> =
See GAMVA for the definition of I'(x).

The argument x must not be exactly zero or a negative integer, or P (x) is undefined. Also, x must not be too close
to a negative integer such that the accuracy of the result is less than half precision.
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Comments

Informational Error

Type Code
3 2

Description

too near a negative integer.

Examples

Example 1

In this example, Y (1.915) is computed and printed.

USE PSI _I NT
USE UMACH_| NT

IMPLICIT NONE
! Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

! Conmput e
X = 1.915
VALUE = PSI ( X)

! Print the results
CALL UMACH (2, NQOUT)
VWRI TE (NOUT, 99999) X, VALUE

99999 FORMAT (' PSI(', F6.3, ') ="', F6.3)
END

Output

PSI( 1.915) = 0.366

Example 2

In this example, Y (1.9 + 4.3/) is computed and printed.

USE PSI _I NT
USE UMACH_| NT

IMPLICIT NONE

! Decl are vari abl es
| NTEGER NOUT
COVPLEX VALUE, Z

! Conmput e
z (1.9, 4.3)
VALUE = PSI (2)

! Print the results
CALL UMACH (2, NOUT)
VRI TE ( NOUT, 99999) Z, VALUE

99999 FORMAT (' PSI(', F6.3, ',', F6.3, ') = (', F6.3,
END

F6. 3,

Result of PSI (X) is accurate to less than one-half precision because Xis

)
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Output

PSI ( 1.900, 4.300) = ( 1.507, 1.255)
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PSI1

This function evaluates the second derivative of the log gamma function.

Function Return Value

PSI1 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: PSI 1 (X)
Spedcific: The specific interface names are S_PSI 1 and D_PSI 1.
Description

The psi 1 function, also called the trigamma function, is defined to be

d2
\|11<x) = Eln F(x)
See GAMVA for the definition of I'(x).

The argument x must not be exactly zero or a negative integer, or g, (x) is undefined. Also, x must not be too close
to a negative integer such that the accuracy of the result is less than half precision.

Comments

Informational Error

Type Code Description

3 2 Result of PSI 1(X) is accurate to less than one-half precision because Xis
too near a negative integer.
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Example

In this example, 4(1.915) is computed and printed.

USE PSI 1_I NT
USE UMACH | NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

! Conmput e
X = 1.915
VALUE = PSI 1( X)

! Print the results
CALL UMACH (2, NOUT)
VWRI TE (NOUT, 99999) X, VALUE

99999 FORMAT (' PSI1(', F6.3, ') ="', F6.3)
END

Output

PSI1( 1.915) = 0.681
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POCH

This function evaluates a generalization of Pochhammer’s symbol.

Function Return Value

POCH — Function value. (Output)
The generalized Pochhammer symbol is ['(a + x)/T(a).

Required Arguments
A — The first argument. (Input)

X — The second, differential argument. (Input)

FORTRAN 90 Interface

Generic: POCH (A, X)
Specific: The specific interface names are S_POCH and D_PCOCH.

FORTRAN 77 Interface

Single: POCH (A, X)
Double: The double precision function name is DPOCH.
Description

Pochhammer's symbol is (), = (@)a - 1)...(a - n+ 1) for na nonnegative integer. Pochhammer’s generalized

symbol is defined to be

F(a +x>
(a)x = F(a)
See GAMVA for the definition of I'(x).

Note that a straightforward evaluation of Pochhammer's generalized symbol with either gamma or log gamma
functions can be especially unreliable when a is large or x is small.
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POCH

Substantial loss can occur if g + x or g are close to a negative integer unless |x| is sufficiently small. To insure that
the result does not overflow or underflow, one can keep the arguments a and a + x well within the range dictated
by the gamma function routine GAMVA or one can keep |x| small whenever g is large. POCH also works for a vari-

ety of arguments outside these rough limits, but any more general limits that are also useful are difficult to

specify.

Comments

Informational Errors

Description

Result of POCH(A, X) is accurate to less than one-half precision because

the absolute value of the Xis too large. Therefore, A+ X cannot be evalu-
ated accurately.

Type Code
3 2
3 2

Result of POCH(A, X) is accurate to less than one-half precision because

either Aor A+ Xis too close to a negative integer.

For X a nonnegative integer, POCHA, X) is just Pochhammer’s symbol.

Example

In this example, (1.6)q g is computed and printed.

USE POCH_I NT

USE UMACH | NT

IMPLICIT  NONE
!

INTEGER  NOUT

REAL A, VALUE, X
!

A = 1.6

X = 0.8

VALUE = PCCH(A, X)

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) A, X,

99999 FORMAT (' POCH(', F6. 3,
END

Output

POCH( 1.600, 0.800) = 1.3902

',', F6.3,

Decl are vari abl es

Conmput e

Print the results

VALUE
') ="', F6.4)
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POCHI

This function evaluates a generalization of Pochhammer’s symbol starting from the first order.

Function Return Value

POCH1 — Function value. (Output)
POCHL(A X) = (POCHA, X)- 1)/X.

Required Arguments
A — The first argument. (Input)

X — The second, differential argument. (Input)

FORTRAN 90 Interface

Generic: POCHL (A X)
Specific: The specific interface names are S_POCH1 and D_POCH1.

FORTRAN 77 Interface

Single: POCH1 (A X)
Double: The double precision function name is DPOCHL.
Description

Pochhammer’s symbol from the first order is defined to be

CRMLCIN

POCHI (a,x) =—% I'(a)

where (), is Pochhammer's generalized symbol. See POCH for the definition of (a),. It is useful in special situa-

tions that require especially accurate values when x is small. This specification is particularly suited for stability
when computing expressions such as
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F(a+x)_ F(b+x)
F(a)  1(b)

Note that POCH1(q, 0) = Y(a). See PSI for the definition of Y(a).

/x=POCHI (a,x) —POCHI1(b,x)

When |x]| is so small that substantial cancellation will occur if the straightforward formula is used, we use an
expansion due to fields and discussed by Luke (1969).

The ratio (a), = ['(a + x)/T(a) is written by Luke as (a + (x - 1)/2)* times a polynomial in (a + (x - 1)/2) 2 To maintain
significance in POCHL, we write for positive g,
@+ - DR2yY=exp(XIn(@a+ (x- 1)/2))=e?=1+ gEXPRL(Q)
where EXPRL( x) = (e*- 1)/x. Likewise, the polynomial is written P =1 + xP; (g, x). Thus,
POCHL (a, X) = ((a), - 1)/x=EXPRL(q)(a/x + qP(a, X)) + Py(a, X)

Substantial significance loss can occur if a + x or g are close to a negative integer even when |x| is very small. To
insure that the result does not overflow or underflow, one can keep the arguments a and a + x well within the
range dictated by the gamma function routine GAMVA or one can keep |x| small whenever g is large. POCH also
works for a variety of arguments outside these rough limits, but any more general limits that are also useful are
difficult to specify.

Example
In this example, POCHL(1.6, 0.8) is computed and printed.

USE POCHL_| NT
USE UMACH_| NT

IMPLICI T NONE
! Decl are vari abl es

| NTEGER NOUT
REAL A, VALUE, X
! Conmput e
A =16
X = 0.8
VALUE = POCHL(A, X)

! Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) A, X, VALUE

99999 FORMAT (' POCHL(', F6.3, ',', F6.3, ') ="', F6.4)
END

Output

POCH1( 1.600, 0.800) = 0.4878
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BETA

This function evaluates the complete beta function.

Function Return Value

BETA — Function value. (Output)

Required Arguments

A — First beta parameter. (Input)
For real arguments, A must be positive.

B — Second beta parameter. (Input)
For real arguments, B must be positive.

FORTRAN 90 Interface

Generic: BETA (A B)
Specific: The specific interface names are S_BETA D_BETA and C_BETA

FORTRAN 77 Interface

Single: BETA (A B)

Double: The double precision function name is DBETA.

Complex: The complex name is CBETA.
Description

The beta function is defined to be

pab) = —rr(gc?zg;) = I;t“_l(l — b ar

See GAMVA for the definition of (x).

For real arguments the function BETA requires that both arguments be positive. In addition, the arguments must

not be so large that the result underflows.
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For complex arguments, the arguments g and a + b must not be close to negative integers. The arguments
should not be so large (near the real axis) that the result underflows. Also, a + b should not be so far from the real

axis that the result overflows.

Comments

Informational Error

Type Code Description

2 1 The function underflows because A and/or Bis too large.
Examples
Example 1

In this example, B(2.2, 3.7) is computed and printed.

USE BETA_ I NT
USE UMACH | NT

IMPLICIT NONE
! Decl are vari abl es

I NTEGER NOUT

REAL A, VALUE, X
! Conmput e
A = 2.2
X = 3.7
VALUE = BETA(A, X)

! Print the results
CALL UMACH (2, NOUT)
VWRI TE (NOUT, 99999) A, X, VALUE

99999 FORVAT (' BETA(', F6.3, ',', F6.3, ') ="', F6.4)
END

Output

BETA( 2.200, 3.700) = 0.0454

Example 2
In this example, B(1.7 + 2.2/, 3.7 + 0.4/) is computed and printed.

USE BETA | NT
USE UMACH | NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT
COVPLEX A, B, VALUE
! Conmput e
A = (1.7, 2.2)
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B
VALUE

BETA( A,
CALL UVACH (2,

(3.7, 0.4)

B)

Print the results

NOUT)

VWRI TE (NQUT, 99999) A, B, VALUE

99999 FORMAT (' BETA((',

)) =,
END

Output

BETA(( 1.700, 2.200),

F6.3, ',', F6.3,

( 3.700, 0.400))

F6.3, ',', F6.3, '), (', F6.3,

= (-0.033,-0.017)

F6. 3, &
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ALBETA

This function evaluates the natural logarithm of the complete beta function for positive arguments.

Function Return Value

ALBETA — Function value. (Output)
ALBETA returns In B(A B) = In(F'(A) (B)/ (A + B)).

Required Arguments

A — The first argument of the BETA function. (Input)
For real arguments, Amust be greater than zero.

B — The second argument of the BETA function. (Input)
For real arguments, B must be greater than zero.

FORTRAN 90 Interface

Generic: ALBETA (A B)
Specific: The specific interface names are S_ALBETA D_ALBETA, and C_ALBETA

FORTRAN 77 Interface

Single: ALBETA (A B)
Double: The double precision function name is DLBETA.

Complex:The complex name is CLBETA.

Description

ALBETA computes In B(a, b) = In B(b, a). See BETA for the definition of B(a, b).

For real arguments, the function ALBETA s defined for @ > 0 and b > 0. It returns accurate results even when g or
b is very small. It can overflow for very large arguments; this error condition is not detected except by the com-

puter hardware.
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For complex arguments, the arguments a, b and a + b must not be close to negative integers (even though some
combinations ought to be allowed). The arguments should not be so large that the logarithm of the gamma func-

tion overflows (presumably an improbable condition).

Comments
Note that In B(A B)=In B(B, A).

Examples

Example 1

In this example, In B(2.2, 3.7) is computed and printed.

USE ALBETA | NT
USE UMACH T NT

IMPLICI T NONE
! Decl are vari abl es

| NTEGER NOUT
REAL A, VALUE, X
! Conmput e
A = 2.2
X = 3.7
VALUE = ALBETA(A, X)

! Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) A, X, VALUE

99999 FORMAT (' ALBETA(', F6.3, ',', F6.3, ') ="', F8.4)
END
Output
ALBETA( 2.200, 3.700) = -3.0928
Example 2

In this example, In B(1.7 + 2.2/, 3.7 + 0.4/) is computed and printed.

USE ALBETA | NT
USE UMACH I NT

IMPLICIT NONE

! Decl are vari abl es
| NTEGER NOUT
COVPLEX A, B, VALUE

! Conmput e
A = (1.7, 2.2)
B = (3.7, 0.4)
VALUE = ALBETA(A, B)

! Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) A, B, VALUE
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99999 FORVAT (' ALBETA((', F6.3, ',', F6.3, '), (', F6.3, ',', F6.3, &
'‘)) = (', F6.3, ',", F6.3, ')")
END

Output

ALBETA(( 1.700, 2.200), ( 3.700, 0.400)) = (-3.280, -2.659)
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BETAI

This function evaluates the incomplete beta function ratio.

Function Return Value

BETAI — Probability that a random variable from a beta distribution having parameters Pl Nand Q Nwill
be less than or equal to X (Output)

Required Arguments

X — Upper limit of integration. (Input)
X'must be in the interval (0.0, 1.0) inclusive.

PIN — First beta distribution parameter. (Input)
Pl N must be positive.

QIN — Second beta distribution parameter. (Input)
Q Nmust be positive.

FORTRAN 90 Interface

Generic; BETAI (X PINQ N
Specific: The specific interface names are S_BETAI and D_BETAI .

FORTRAN 77 Interface

Single: BETAI (X PINQ N
Double: The double precision function name is DBETAI .
Description

The incomplete beta function is defined to be
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~Be(pa)
LPD) = %000y = 50ra)

for0<x<1,p>0,g>0

ot 1 —0""ar

See BETA for the definition of B(p, g).

The parameters p and g must both be greater than zero. The argument x must lie in the range 0 to 1. The incom-
plete beta function can underflow for sufficiently small x and large p; however, this underflow is not reported as
an error. Instead, the value zero is returned as the function value.

The function BETAI is based on the work of Bosten and Battiste (1974).

Example

In this example, /. 61(2.2, 3.7) is computed and printed.

USE BETAI _I NT
USE UMACH_| NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT

REAL PIN, QN VALUE, X
! Conput e
X = 0.61
PIN =2.2
QN =3.7
VALUE = BETAI (X, PIN, QN)

! Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, PIN, Q N, VALU

99999 FORVAT (' BETAI(', F6.3, ',', F6.3, ',', F6.3, ') ="', F6.4)
END

Output

BETAI ( 0.610, 2.200, 3.700) = 0.8822
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Error Function and Related

Functions

Routines

5.1

Error Functions

Evaluatesthe errorfunction, erfx......... ... ... ERF
Evaluates the complementary error function,erfcx................. ERFC
Evaluates the scaled complementary error function, exp(xz) erfc(x). . . ERFCE
Evaluates a scaled function related to erfc, exp(-z2) erfc(-iz) . . . . . . . .. CERFE
Evaluates the inverse error function, erf [ ERFI
Evaluates the inverse complementary error function, erfc” T, ERFCI
Evaluates Dawson’sfunction ........ ... ... ... .. i ... DAWS

5.2 Fresnel Integrals

Evaluates the cosine Fresnelintegral, C(x). ... .................... FRESC
Evaluates the sine Fresnelintegral, S(x) .. .. .....coiiiiiiia... FRESS

125
127
130
132
134
137
140

142
144
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Usage Notes

The error function is
X
2
e(x) = %J'Oe " dt

The complementary error function is erfc(x) = 1 - erf(x). Dawson’s function is
X
2 2
e J. e dt
0
The Fresnel integrals are

C(x) = IZCOS(%#)dl

and

S(x) = ﬁsin(%ﬂ)dt

They are related to the error function by

C(z) +is(z) = 1 ert (Y (1-1):)
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ERF

This function evaluates the error function.

Function Return Value

ERF — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: ERF (X)
Specific: The specific interface names are S_ERF and D_ERF.

FORTRAN 77 Interface

Single: ERF (X)
Double: The double precision function name is DERF.
Description

The error function, erf(x), is defined to be

X
erf (x) = %J'oe_’zdt

All values of x are legal.
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ERF
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Figure 7, Plot of erf (x)
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Example

In this example, erf(1.0) is computed and printed.

USE ERF_I NT
USE UMACH_| NT

IMPLICIT  NONE

I NTEGER NOUT
REAL VALUE, X

X = 1.0
VALUE = ERF(X)

CALL UMACH (2, NOUT)

Decl are vari abl es

Conmput e

Print the results

WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' ERF(', F6.3, ') = ', F6.3)
END

Output

ERF( 1.000) = 0.843
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ERFC

This function evaluates the complementary error function.

Function Return Value

ERFC — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: ERFC (X)
Spedcific: The specific interface names are S_ERFCand D_ERFC.

FORTRAN 77 Interface

Single: ERFC (X)
Double: The double precision function name is DERFC.
Description

The complementary error function, erfc(x), is defined to be

erfc (x) = %J‘ e_tza’t
X

The argument x must not be so large that the result underflows. Approximately, x should be less than

[-in(vas) ]

where s = AMACH(1) (see the Reference Material section of this manual) is the smallest representable positive float-

ing-point number.
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Figure 8, Plot of erfc (x)
Comments
Informational Error
Type Code Description
2 1 The function underflows because Xiis too large.

Example
In this example, erfc(1.0) is computed and printed.

USE ERFC_| NT
USE UMACH | NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

! Conput e
X =1.0
VALUE = ERFC(X)

! Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE

128



Error Function and Related Functions ERFC

99999 FORVAT (' ERFC(', F6.3, ') = ', F6.3)
END

Output

ERFC( 1.000) = 0.157
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ERFCE

This function evaluates the exponentially scaled complementary error function.

Function Return Value

ERFCE — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: ERFCE (X)
Spedcific: The specific interface names are S_ERFCE and D_ERFCE.

FORTRAN 77 Interface

Single: ERFCE (X)
Double: The double precision function name is DERFCE.
Description

The function ERFCE(X) computes

2
" erfe(x)
where erfc(x) is the complementary error function. See ERFC for its definition.

To prevent the answer from underflowing, x must be greater than

Xin™—In(5/2)

where b = AMACH?2) is the largest representable floating-point number.
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Comments

Informational Error

Type Code Description
2 1 The function underflows because Xis too large.
Example

In this example, ERFCE(1.0) = e' 9 erfc(1.0) is computed and printed.

USE ERFCE_I NT
USE UMACH_| NT

IMPLICIT  NONE
I NTEGER NOUT

REAL VALUE, X
!

X = 1.0

VALUE = ERFCE(X)

CALL UMACH (2, NOUT)

WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' ERFCE(', F6.3, ')

END

Output

ERFCE( 1.000) = 0.428

Decl are vari abl es

Conput e

Print the results

", F6.3)
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CERFE

This function evaluates a scaled function related to ERFC.

Function Return Value

CERFE — Complex function value. (Output)

Required Arguments

Z — Complex argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: CERFE (2)
Specific: The specific interface names are C_CERFE and Z_CERFE.

FORTRAN 77 Interface
Complex:CERFE ( Z)

Double complex:The double complex function name is ZERFE.

Description

Function CERFE is defined to be

efzzerfc(—iz) = — iezz—J‘we’Zdt
Vrd:
Let b = AMACH2) be the largest floating-point number. The argument z must satisfy

|z <Vb

or else the value returned is zero. If the argument z does not satisfy (92)%- (R2)%< log b, then b is returned. Al

other arguments are legal (Gautschi 1969, 1970).
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Example
In this example, CERFE(2.5 + 2.5/) is computed and printed.

USE CERFE_| NT
USE UMACH_| NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT
COVPLEX VALUE, Z
1 Conmput e
Z (2.5, 2.5)
VALUE = CERFE(2)
! Print the results
CALL UMACH (2, NauTt)
WRI TE (NOUT, 99999) Z, VALUE
99999 FORMAT (' CERFE(', F6.3, ',', F6.3, ') = (', &
F6.3, ',', F6.3, ')")

END

Output

CERFE( 2.500, 2.500) = ( 0.117, 0.108)
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ERFI

This function evaluates the inverse error function.

Function Return Value

ERFI — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: ERFI (X)
Specific: The specific interface names are S_ERFI and D_ERFI .

FORTRAN 77 Interface

Single: ERFI (X)
Double: The double precision function name is DERFI .
Description

Function ERFI (X) computes the inverse of the error function erf x, defined in ERF.

The function ERFI (X) is defined for [x] < 1. If X,,,< |X| <1, then the answer will be less accurate than half preci-

sion. Very approximately,

Xmax ~ 1 — €/ (47[)

where € = AMACH4) is the machine precision.
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Comments
Informational Error
Type Code Description
3 2 Result of ERFI (X) is accurate to less than one-half precision because the
absolute value of the argument is too large .
Example

In this example, erf” Terf(1.0)) is computed and printed.

USE ERFI I NT
USE ERF_TNT
USE UMACH | NT
IMPLICIT  NONE
!
INTEGER  NOUT
REAL VALUE, X
|
X = ERF(1.0)
VALUE = ERFI (X)

Decl are vari abl es

Conput e
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Print the results
CALL UMACH (2, NauT)

WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' ERFI(', F6.3, ') = ', F6.3)
END

Output

ERFI ( 0.843) = 1.000

136



Error Function and Related Functions ERFCI

ERFCI

This function evaluates the inverse complementary error function.

Function Return Value

ERFCI — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: ERFCI (X)
Spedcific: The specific interface names are S_ERFCl and D_ERFCI .

FORTRAN 77 Interface

Single: ERFCI (X)
Double: The double precision function name is DERFCI .
Description

The function ERFCI (X) computes the inverse of the complementary error function erfc x, defined in ERFC.

The function ERFCI (X) is defined for 0 <x < 2. If X, < X < 2, then the answer will be less accurate than half pre-

cision. Very approximately,

Xmax ~ 2 — €/ (47[)

Where € = AMACH4) is the machine precision.
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Comments
Informational Error
Type Code Description
3 2 Result of ERFCI (X) is accurate to less than one-half precision because the

argument is too close to 2.0.

Example

In this example, erfc” Terfc(1.0)) is computed and printed.

USE ERFCI _| NT
USE ERFC TNT
USE UMACH | NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT
REAL VALUE, X
! Conput e
X = ERFC(1. 0)
VALUE = ERFCI ( X)
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Print the results
CALL UMACH (2, NauT)

WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' ERFCI (', F6.3, ') ="', F6.3)
END

Output

ERFCI ( 0.157) = 1.000
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DAWS

This function evaluates Dawson'’s function.

Function Return Value

DAWS — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: DAV (X)

Spedcific: The specific interface names are S_DAWS and D_DAWS.

FORTRAN 77 Interface

Single: DAV (X)
Double: The double precision function name is DDAWS.
Description

Dawson'’s function is defined to be

X
2 2
ex'[e’dt
0

It is closely related to the error function for imaginary arguments.

So that Dawson's function does not underflow, |x| must be less than 1/(2s). Here, s = AMACH(1) is the smallest

representable positive floating-point number.

Comments

Informational Error
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The Dawson function is closely related to the error function for imaginary arguments.

Type Code Description

3 2 The function underflows because the absolute value of Xis too large.

Example

In this example, DAWS(1.0) is computed and printed.

99999

USE DAWS_| NT
USE UMACH | NT

IMPLICI T NONE
Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

Conput e
X =1.0
VALUE = DAWS( X)

Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE

Output

DAWS(

FORMAT (' DAWS(', F6.3, ') = ', F6.3)
END
1.000) = 0.538
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FRESC

This function evaluates the cosine Fresnel integral.

Function Return Value

FRESC — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: FRESC (X)
Spedcific: The specific interface names are S_FRESCand D_FRESC.

FORTRAN 77 Interface

Single: FRESC (X)
Double: The double precision function name is DFRESC.
Description

The cosine Fresnel integral is defined to be

C(x) = IZCOS(%#)dl

All values of x are legal.

Example
In this example, ((1.75) is computed and printed.

USE FRESC | NT
USE UMACH_I NT

IMPLICIT  NONE
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I NTEGER NOUT

REAL VALUE, X
|

X = 1.75

VALUE = FRESC( X)

CALL UMACH (2, NOUT)

WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' FRESC(', F6.3, ')

END

Output

FRESC( 1.750) = 0.322

Decl are vari abl es

Conmput e

Print the results

="', F6.3)
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FRESS

This function evaluates the sine Fresnel integral.

Function Return Value

FRESS — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: FRESS (X)
Spedcific: The specific interface names are S_FRESS and D_FRESS.

FORTRAN 77 Interface

Single: FRESS (X)
Double: The double precision function name is DFRESS.
Description

The sine Fresnel integral is defined to be

S(x) = Esin(%ﬁ)dt

All values of x are legal.

Example
In this example, 5(1.75) is computed and printed.

USE FRESS_| NT
USE UMACH_I NT

IMPLICIT  NONE
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I NTEGER NOUT

REAL VALUE, X
!

X = 1.75

VALUE = FRESS(X)

CALL UMACH (2, NOUT)

WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' FRESS(', F6.3, ')

END

Output

FRESS( 1.750) = 0.499

Decl are vari abl es

Conmput e

Print the results

="', F6.3)
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Bessel Functions

Routines

6.1 Bessel Functions of OrderOand 1

Evaluates Jo(x) . - - v e BSJO 148
Evaluates J1(x) . . v e BS)1T 150
Evaluates Yo(x) . . ..veeei i BSYO 152
Evaluates Y1(x) . ....oeeeoi e BSY1 154
Evaluates lg(X) . ..o oo BSIO 156
Evaluates (x) . . . oo e BSIT 158
Evaluates Ko(x) - .« v vveee e BSKO 160
Evaluates Kj(x) ... oornn i e BSK1 163
Evaluates e ™lig(x). .. ..o oee i BSIOE 165
Evaluates e Ih(x) ..ot BSITE 167
Evaluates € Kp(x) - .. vvveeeeeeeee e BSKOE 169
Evaluates € Kq(X). . ... e BSKT1E 171
6.2 Series of Bessel Functions, Integer Order
Evaluates Ji(x), k=0, ...,n-T. ... i BSINS 173
Evaluates I;(x), k=0, ..., n-T. . oo e BSINS 176
6.3 Series of Bessel Functions, Real Order and Argument
Evaluates ), , 4(x), k=0, ...,n-T. .. i BS)S 179
Evaluates Y, , 4(x), k=0, ....n-T1 ... .. .. i BSYS 181
Evaluates |, , 4(x), k=0, ...,n-T... .. i BSIS 183
Evaluatese™ 1, , j(x), k=0, ...,n-T. ... ... i BSIES 185
Evaluates K, , 4(x), k=0, ...,n-1 ... .. i BSKS 187
Evaluates €K, , 4x(x), k=0, ...,n-1 ... . . BSKES 189
6.4 Series of Bessel Functions, Real Order and Complex Argument
Evaluates ), , 4(2), k=0, ...,n-T. .. i CB)S 191
Evaluates Y, , x(2), k=0, ...,n-1 ... . ... ... .. i CBYS 194
Evaluates |, , 4(2), k=0, ...,n-T.. ... i CBIS 197
Evaluates K, , 4(2), k=0, ...,n-T ... CBKS 199
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Usage Notes

The following table lists the Bessel function routines by argument and order type:

Complex
Real Argument Argument
Order Order

Function |0 1 Integer |Real Integer |Real

JUX) BSJO BSJ1 BSINS BSJS BSINS CBJS

Y Ux) BSYO BSY1 BSYS CBYS

1x) BSI 0 BSI 1 BSI NS BSI S BSI NS CBI S
e~ 1 (x) BSI OE |BSI 1E BSI ES

K x) BSKO BSK1 BSKS CBKS
ek (x) |BSKOE |BSKIE BSKES
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BSJO

This function evaluates the Bessel function of the first kind of order zero.

Function Return Value

BSJ0 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: BSJO (X)
Specific: The specific interface names are S_BSJO and D_BSJ0.

FORTRAN 77 Interface

Single: BSJO (X)
Double: The double precision function name is DBSJO.
Description

The Bessel function Jo(x) is defined to be

T
1 .
Jo(x) = ﬁjocos(x sin 0) d6
To prevent the answer from being less accurate than half precision, |x| should be smaller than
1/Ve

For the result to have any precision at all, |x| must be less than 1/¢. Here, € is the machine precision,
€ = AVACH4).
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Figure 11, Plot of o(x) and J;(x)

Example

In this example, Jo(3.0) is computed and printed.

USE BSJO_I NT
USE UMACH | NT

IMPLICI T NONE

Decl are vari abl es
| NTEGER NOUT
REAL VALUE, X

Conmput e
X
VALUE

3.0
BSJO( X)

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE

Print the results

99999 FORVAT (' BSJO(', F6.3, ') =', F6.3)
END
Output
BSJO( 3.000) = -0.260
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BS)1

This function evaluates the Bessel function of the first kind of order one.

Function Return Value

BSJ1 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: BSJ1 (X)
Spedcific: The specific interface names are S_BSJ1 and D_BSJ1.

FORTRAN 77 Interface

Single: BSJ1 (X)
Double: The double precision function name is DBSJ 1.
Description

The Bessel function /;(x) is defined to be

Ji(x) = %J‘Ocos@c sin —6)d0

The argument x must be zero or larger in absolute value than 2s to prevent /;(x) from underflowing. Also, |x|

should be smaller than

1/ve

to prevent the answer from being less accurate than half precision. |x| must be less than 1/¢ for the result to have
any precision at all. Here, € is the machine precision, e = AMACH4), and s = AMACH(1) is the smallest represent-
able positive floating-point number.
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Comments

Informational Error

Type Code Description
2 1 The function underflows because the absolute value of X is too small.
Example

In this example, /4(2.5) is computed and printed.

USE BSJ1_I NT
USE UMACH | NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

! Conput e
X = 2.5
VALUE = BSJ1(X)

! Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE

99999 FORMAT (' BSJ1(', F6.3, ') ="', F6.3)
END

Output

BSJ1( 2.500) = O0.497

151



Bessel Functions BSYO

BSYO

This function evaluates the Bessel function of the second kind of order zero.

Function Return Value

BSY0 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: BSYO (X)
Specific: The specific interface names are S_BSY0 and D_BSYO0.

FORTRAN 77 Interface

Single: BSYO (X)
Double: The double precision function name is DBSYO.
Description

The Bessel function Yy(x) is defined to be

T 00
IJ- . : 2j —x sinh ¢
Yo(x) =7 sin(xsinf) do—%| e dt
o(x) =7 sin(xsin 0) dO -7
To prevent the answer from being less accurate than half precision, x should be smaller than

1/Ve
For the result to have any precision at all, |x| must be less than 1/¢. Here, € is the machine precision,
€ = AVACH4).
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Figure 12, Plot of Y(x) and Y;(x)

Example

In this example, Y(3.0) is computed and printed.

99999

Output

BSYO(

USE BSYO_I NT
USE UMACH | NT

IMPLICI T NONE
Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

Conmput e
X = 3.0
VALUE = BSYO( X)

Print the results
CALL UMACH (2, NaUT)
WRI TE (NOUT, 99999) X, VALUE
FORMAT (' BSYO(', F6.3, ') ="', F6.3)
END

3.000) = 0.377
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BSY1

This function evaluates the Bessel function of the second kind of order one.

Function Return Value

BSY1 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: BSY1 (X)
Spedcific: The specific interface names are S_BSY1 and D_BSY1.

FORTRAN 77 Interface

Single: BSY1 (X)
Double: The double precision function name is DBSY1.
Description

The Bessel function Y;(x) is defined to be

Yl(x) = —%J.Osin(ﬁ—x sin H)de—%J‘O {et—eﬁ}e’x sinh

Y1(x) is defined for x > 0. To prevent the answer from being less accurate than half precision, x should be smaller

than

1/Ve
For the result to have any precision at all, [x| must be less than 1/¢. Here, € is the machine precision,
€ = AMACH4).
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Example

In this example, ¥4(3.0) is computed and printed.

USE BSY1_| NT
USE UMACH | NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

! Conmput e
X = 3.0
VALUE = BSY1( X)

! Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE

99999 FORMVAT (' BSY1(', F6.3, ') ="', F6.3)
END

Output

BSY1( 3.000) = 0.325
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BSIO

This function evaluates the modified Bessel function of the first kind of order zero.

Function Return Value

BSI0 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: BSIO (X)
Specific: The specific interface names are S_BSI0 and D_BSIO.

FORTRAN 77 Interface

Single: BSIO (X)
Double: The double precision function name is DBSIO.
Description

The Bessel function /p(x) is defined to be

]0<x) = %Iocosh@ cos 0)d0

The absolute value of the argument x must not be so large that e®! overflows.
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Figure 13, Plot of Ip(x) and l;(x)

Example

In this example, /5 (4.5) is computed and printed.

99999

Output

BSI 0(

USE BSI 0_I NT
USE UMACH | NT

IMPLICI T NONE
Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

Conmput e
X = 4.5
VALUE = BSI 0( X)

Print the results
CALL UMACH (2, NaUT)
WRI TE (NOUT, 99999) X, VALUE
FORMAT (' BSIO(', F6.3, ') ="', F6.3)
END

4.500) = 17.481
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BSIT

This function evaluates the modified Bessel function of the first kind of order one.

Function Return Value

BSI1 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: BSI 1 (X)
Spedcific: The specific interface names are S_BSI 1 and D_BSI 1.

FORTRAN 77 Interface

Single: BSI 1 (X)
Double: The double precision function name is DBSI 1.
Description

The Bessel function /4(x) is defined to be

I(x)= %J.Oex cos Ocos 6 d

The argument should not be so close to zero that /4(x) = x/2 underflows, nor so large in absolute value that elxl

and, therefore, /;(x) overflows.

Comments

Informational Error
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Type Code Description

2 1 The function underflows because the absolute value of Xis too small.

Example

In this example, /1(4.5) is computed and printed.

99999

USE BSI 1_I NT
USE UMACH | NT

IMPLICI T NONE
Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

Conput e
X = 4.5
VALUE = BSI 1( X)

Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
FORVAT (' BSI1(', F6.3, ') ="', F6.3)
END

Output

BSI 1(

4.500) = 15. 389
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BSKO

This function evaluates the modified Bessel function of the second kind of order zero.

Function Return Value

BSKO — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

Fortran 90 Interface

Generic: BSKO (X)
Specific: The specific interface names are S_BSKO and D_BSKO.

FORTRAN 77 Interface

Single: BSKO (X)
Double: The double precision function name is DBSKO.
Description

The Bessel function Ky(x) is defined to be

Ko(x) = Iocos<x sinh 1) dt

The argument must be larger than zero, but not so large that the result, approximately equal to

Wr/(2x)e_x

underflows.
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Figure 14, Plot of Ky(x) and K;(x)

Comments

Informational Error

Type Code Description

2 1 The function underflows because Xis too large.

Example

In this example, Ky(0.5) is computed and printed.

USE BSKO_I NT
USE UMACH | NT

IMPLICIT  NONE

Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

X =0.5
VALUE = BSKO(X)

Conput e

Print the results
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CALL UMACH (2, NOUT)
VR TE (NOUT, 99999) X, VALUE
99999 FORMAT (' BSKO(', F6.3, ')
END

Output

BSKO( 0.500) = 0.924

F6. 3)
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BSKI

This function evaluates the modified Bessel function of the second kind of order one.

Function Return Value

BSK1 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: BSK1 (X)
Spedcific: The specific interface names are S_BSK1 and D_BSK1.

FORTRAN 77 Interface

Single: BSK1 (X)
Double: The double precision function name is DBSK1.
Description

The Bessel function Ky (x) is defined to be

K (x)= Iosin(x sinh #)sinh 7 df

The argument x must be large enough (> max(1/b, s)) that K4(x) does not overflow, and x must be small enough

that the approximate answer,

yr/ (2x)e™

does not underflow. Here, s is the smallest representable positive floating-point number, s = AMACH(1) , and
b = AMACH2) is the largest representable floating-point number.
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Comments

Informational Error

Type Code Description
2 1 The function underflows because Xis too large.
Example

In this example, K;(0.5) is computed and printed.

99999

USE BSK1_| NT
USE UMACH | NT

IMPLICI T NONE
Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

Conput e
X = 0.5
VALUE = BSK1( X)

Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE

Output

BSK1(

FORMAT (' BSK1(', F6.3, ') =', F6.3)
END
0.500) = 1.656
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BSIOE

This function evaluates the exponentially scaled modified Bessel function of the first kind of order zero.

Function Return Value

BSIOE — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: BSI OE (X)
Spedcific: The specific interface names are S_BSI OE and D_BSI OE.

FORTRAN 77 Interface

Single: BSI OE (X)
Double: The double precision function name is DBSI OE.
Description

Function BSI OE computes el Io(x). For the definition of the Bessel function /y(x), see BSI 0.

Example
In this example, BSI OE(4.5) is computed and printed.

USE BSI OE_| NT
USE UMACH_| NT

IMPLICI T NONE

! Decl are vari abl es
| NTEGER NOUT
REAL VALUE, X

! Conmput e

4.5

BSI 0E( X)

X
VALUE
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Print the results
CALL UMACH (2, NauT)

WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' BSIOE(', F6.3, ') ="', F6.3)
END

Output

BSI OE( 4.500) = 0.194
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BSITE

This function evaluates the exponentially scaled modified Bessel function of the first kind of order one.

Function Return Value

BSI1E — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: BSI 1E (X)
Spedcific: The specific interface names are S_BSI 1Eand D_BSI 1E.

FORTRAN 77 Interface

Single: BSI 1E (X)
Double: The double precision function name is DBSI 1E.
Description

Function BSI 1E computes el I1(x). For the definition of the Bessel function /4(x), see BSI 1. The function

BSI 1E underflows if |x|/2 underflows.

Comments

Informational Error

Type Code Description

2 1 The function underflows because the absolute value of Xis too small.
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Example
In this example, BSI 1E(4.5) is computed and printed.

USE BSI 1E_I NT
USE UMACH_| NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

! Conmput e
X = 4.5
VALUE = BSI 1E( X)

! Print the results
CALL UMACH (2, NOUT)
VRI TE ( NOUT, 99999) X, VALUE

99999 FORMAT (' BSI1E(', F6.3, ') ="', F6.3)
END

Output

BSI 1E( 4.500) = 0.171
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BSKOE

This function evaluates the exponentially scaled modified Bessel function of the second kind of order zero.

Function Return Value

BSKOE — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: BSKOE (X)
Spedcific: The specific interface names are S_BSKOE and D_BSKOE.

FORTRAN 77 Interface

Single: BSKOE (X)
Double: The double precision function name is DBSKOE.
Description

Function BSKOE computes e*K(x). For the definition of the Bessel function Ky(x), see BSKO. The argument must
be greater than zero for the result to be defined.

Example
In this example, BSKOE(0.5) is computed and printed.

USE BSKOE_| NT
USE UMACH_| NT

IMPLICI T NONE

! Decl are vari abl es
| NTEGER NOUT
REAL VALUE, X

! Conput e
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X 0.5
VALUE = BSKOE( X)
! Print the results
CALL UMACH (2, NauT)
VRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' BSKOE(', F6.3, ') ="', F6.3)
END

Output

BSKOE( 0.500) = 1.524
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BSKI1E

This function evaluates the exponentially scaled modified Bessel function of the second kind of order one.

Function Return Value

BSK1E — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: BSK1E (X)
Spedcific: The specific interface names are S_BSK1E and D_BSK1E.

FORTRAN 77 Interface

Single: BSK1E (X)
Double: The double precision function name is DBSK1E.
Description

Function BSK1E computes e*K;(x). For the definition of the Bessel function K7(x), see BSK1. The answer

BSK1E = e*K;(x) = 1/x overflows if x is too close to zero.

Example
In this example, BSK1E(0.5) is computed and printed.

USE BSKLE_I NT
USE UMACH_| NT

IMPLICI T NONE

! Decl are vari abl es
| NTEGER NOUT
REAL VALUE, X

! Conput e
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X 0.5
VALUE = BSKI1E(X)
! Print the results
CALL UMACH (2, NauT)
VRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' BSK1E(', F6.3, ') ="', F6.3)
END

Output

BSK1E( 0.500) = 2.731
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BSJNS

Evaluates a sequence of Bessel functions of the first kind with integer order and real or complex arguments.

Required Arguments

X — Argument for which the sequence of Bessel functions is to be evaluated. (Input)
The absolute value of real arguments must be less than 10%,
The absolute value of complex arguments must be less than 10%.

N — Number of elements in the sequence. (Input)
It must be a positive integer.

BS — Vector of length N containing the values of the function through the series. (Output)
BS(l ) contains the value of the Bessel function of order | - Tatxforl =1to N

FORTRAN 90 Interface

Generic: CALL BSINS (X, N BS)
Spedcific: The specific interface names are S_BSJINS, D_BSJINS, C_BSINS, and Z_BSJINS.

FORTRAN 77 Interface

Single: CALL BSINS (X, N BS)
Double: The double precision name is DBSINS.
Complex: The complex name is CBINS.

Double Complex: The double complex name is DCBJINS.

Description

The complex Bessel function /,(2) is defined to be

Ju(z) = %J‘Ocos(z sin @ —n6)do

This code is based on the work of Sookne (1973a) and Olver and Sookne (1972). It uses backward recursion with
strict error control.
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BSINS

Examples

Example 1

In this example, /,(10.0), n =0, ..., 9 is computed and printed.

USE BSJNS_I NT
USE UMACH_| NT

IMPLICIT  NONE
| NTEGER N
PARAVETER ( N=10)

| NTEGER K, NOUT
REAL BS(N), X
X = 10.0

CALL BSINS (X, N, BS)

CALL UMACH (2, NOUT)

Decl are vari abl es

Conput e

Print the results

DO 10 K=1, N
VR TE (NOUT, 99999) K-1, X, BS(K)
10 CONTI NUE
99999 FORMAT (' J sub ', 12, ' (', F6.3,
END
Output
J sub 0 (10.000) = -0.246
J sub 1 (10.000) = 0.043
J sub 2 (10.000) = 0. 255
J sub 3 (10.000) = 0.058
J sub 4 (10.000) = -0.220
J sub 5 (10.000) = -0.234
J sub 6 (10.000) = -0.014
J sub 7 (10.000) = 0.217
J sub 8 (10.000) = 0.318
J sub 9 (10.000) = 0.292
Example 2

")

F6. 3)

In this example, /,(10 +10i), n =0, ..., 10 is computed and printed.

USE BSJNS_I NT
USE UVACH_| NT

IMPLICIT  NONE
| NTEGER N
PARAMETER ( N=11)

| NTEGER K, NOUT
COMPLEX CBS(N, Z
Z = (10.0, 10.0)

CALL BSINS (Z, N, CBS)

CALL UMACH (2, NOUT)

Decl are vari abl es

Conmput e

Print the results
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DO 10 K=1, N
WRI TE (NOUT, 99999) K-1, Z, CBS(K)

10 CONTI NUE
99999 FORMAT (' J sub ', 12, ' ((', F6.3, ',', F6.3, &
")) = (', F9.3, ',', F9.3, "))
END
Output
J sub 0 ((10.000,10.000)) = (-2314.975, 411.563)
J sub 1 ((10.000,10.000)) = ( -460.681, -2246. 627)
J sub 2 ((10.000,10.000)) = ( 2044.245, -590.157)
J sub 3 ((10.000,10.000)) = ( 751.498, 1719.746)
J sub 4 ((10.000,10.000)) = (-1302.871, 880.632)
J sub 5 ((10.000,10.000)) = ( -920.394, -846.345)
J sub 6 ((10.000,10.000)) = ( 419.501, -843.607)
J sub 7 ((10.000,10.000)) = ( 665.930,  88.480)
J sub 8 ((10.000,10.000)) = ( 108.586, 439.392)
J sub 9 ((10.000,10.000)) = ( -227.548, 176.165)
J sub 10 ((10.000, 10.000)) = ( -154.831, -76.050)
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BSINS

Evaluates a sequence of modified Bessel functions of the first kind with integer order and real or complex

arguments.

Required Arguments

X — Argument for which the sequence of Bessel functions is to be evaluated. (Input)
For real argument exp(|x|) must not overflow. For complex arguments x must be less than 10%in

absolute value.
N — Number of elements in the sequence. (Input)

BSI — Vector of length N containing the values of the function through the series. (Output)
BSI (I ) contains the value of the Bessel function of order | - Tatxforl =1toN

FORTRAN 90 Interface

Generic: CALL BSI NS (X, N BSI )
Specific: The specific interface names are S_BSI NS, D_BSI NS, C_BSI NS, and Z_BSI NS.

FORTRAN 77 Interface

Single: CALL BSI NS (X, N BSI )
Double: The double precision name is DBSI NS.
Complex: The complex name is CBI NS.

Double Complex: The double complex name is DCBI NS.

Description

The complex Bessel function /,(z) is defined to be

7T
I,(z)= %J‘Oez s Ocos (n0) do

This code is based on the work of Sookne (1973a) and Olver and Sookne (1972). It uses backward recursion with

strict error control.
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SINS

Examples

Example 1

In this example, /,(10.0), n =0, ..., 10 is computed and printed.

USE BSI NS_I NT
USE UMACH_| NT

IMPLICIT  NONE
INTEGER N
PARAVETER (N=11)
INTEGER K, NOUT
REAL BSI (N), X
X = 10.0

Decl are vari abl es

Conput e

CALL BSINS (X, N, BSI)
CALL UMACH (2, NOUT)

DO 10 K=1,

N

Print the results

WRI TE (NOUT, 99999) K-1, X, BSI (K)

10 CONTI NUE

99999 FORMAT (
END

Output

| sub 0 (10.

I sub 1 (10.

| sub 2 (10.

I sub 3 (10.

| sub 4 (10.

I sub 5 (10.

| sub 6 (10.

I sub 7 (10.

| sub 8 (10.

I sub 9 (10.

| sub 10 (10.
Example 2

000)
000)
000)
000)
000)
000)
000)
000)
000)
000)
000)

sub ',

2815.
2670.
2281.
1758.
1226.
777.
449,
238.
116.
52.
21.

In this example, /,(10 + 10/), n =0,

USE BSI NS_I NT
USE UMACH_| NT

IMPLICIT

I NTEGER
PARAVETE

I NTEGER
COVPLEX

Z = (10.

NONE
N

R (N=11)
K, NOUT

CBS(N), Z
0, 10.0)

12, * (', F6.3, ') ="', F9.3)

716
988
il
381
490
188
302
026
066
319
892

..., 10 is computed and printed.

Decl are vari abl es

Conput e

CALL BSINS (Z, N, CBS)

Print the results
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CALL UMACH (2, NOUT)
DO 10 K=1, N
WRI TE (NOUT, 99999) K-1, Z, CBS(K)

10 CONTI NUE
99999 FORMAT (' | sub ', 12, ' ((', F6.3, ',', F6.3, &
")) = (', F9.3, ',', F9.3, "))
END
Output
| sub 0 ((10.000,10.000)) = (-2314.975, -411.563)
| sub 1 ((10.000,10.000)) = (-2246.627, -460.681)
| sub 2 ((10.000,10.000)) = (-2044.245, -590.157)
| sub 3 ((10.000,10.000)) = (-1719.746, -751.498)
| sub 4 ((10.000,10.000)) = (-1302.871, -880.632)
| sub 5 ((10.000,10.000)) = ( -846.345, -920.394)
| sub 6 ((10.000,10.000)) = ( -419.501, -843.607)
| sub 7 ((10.000,10.000)) = ( -88.480, -665.930)
| sub 8 ((10.000,10.000)) = ( 108.586, -439.392)
| sub 9 ((10.000,10.000)) = ( 176.165, -227.548)
| sub 10 ((10.000,10.000)) = ( 154.831, -76.050)
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BSJS

Evaluates a sequence of Bessel functions of the first kind with real order and real positive arguments.

Required Arguments

XNU — Real argument which is the lowest order desired. (Input)
It must be at least zero and less than one.

X — Real argument for which the sequence of Bessel functions is to be evaluated. (Input)
It must be nonnegative.

N — Number of elements in the sequence. (Input)

BS — Vector of length N containing the values of the function through the series. (Output)
BS(l ) contains the value of the Bessel function of order XNU+ 1 - T atxforl =1to N

FORTRAN 90 Interface

Generic: CALL BSIS (XNU, X, N BS)
Spedcific: The specific interface names are S_BSJS and D_BSJS.

FORTRAN 77 Interface

Single: CALL BSJS (XNU X N BS)
Double: The double precision name is DBSJS.
Description

The Bessel function /,(x) is defined to be

(x12) iy
Jo(x) = \/EF<V+1/2>J‘OCOS<X cos 0)sin®"0 do

This code is based on the work of Gautschi (1964) and Skovgaard (1975). It uses backward recursion.
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BSJS

Comments

Workspace may be explicitly provided, if desired, by use of B2JS/DB2JS. The reference is

The additional argument is

Example

In this example, /,(2.4048256), v=0, ..., 10 is computed and printed.

DO 10 K=1, N
10 CONTI NUE
99999 FORMAT (' J sub ',
END
Output
J sub 0.000 ( 2.405)
J sub 1.000 ( 2.405)
J sub 2.000 ( 2.405)
J sub 3.000 ( 2.405)
J sub 4.000 ( 2.405)
J sub 5.000 ( 2.405)
J sub 6.000 ( 2.405)
J sub 7.000 ( 2.405)
J sub 8.000 ( 2.405)
J sub 9.000 ( 2.405)
J sub 10.000 ( 2.405)

CALL B2JS (XNU X N BS, VK)

WK — work array of length 2* N

USE BSJS_I NT
USE UMVACH | NT

I MPLICI T

| NTEGER
PARAMETER (N=11)

I NTEGER
REAL

XNU

X

CALL BSJS (XNU, X, N, BS)
CALL UMACH (2, NOUT)

0.0

NONE
N

K, NOUT
BS(N), X, XNU

2.4048256

Decl are vari abl es

Conmput e

Print the results

WRI TE (NOUT, 99999) XNU+K-1, X, BS(K)

F6. 3,

[elelolololololololele]

C

. 000
. 519
. 432
. 199
. 065
. 016
. 003
. 001
. 000
. 000
. 000

, F6.3, ') =",
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BSYS

Evaluates a sequence of Bessel functions of the second kind with real nonnegative order and real positive

arguments.

Required Arguments

XNU — Real argument which is the lowest order desired. (Input)
It must be at least zero and less than one.

X — Real positive argument for which the sequence of Bessel functions is to be evaluated. (Input)

N — Number of elements in the sequence. (Input)

BSY — Vector of length N containing the values of the function through the series. (Output)
BSY(l ) contains the value of the Bessel function of order | - 1+ XNUatxfor| =1to N,

FORTRAN 90 Interface

Generic: CALL BSYS (XNU, X, N BSY)
Specific: The specific interface names are S_BSYS and D_BSYS.

FORTRAN 77 Interface

Single: CALL BSYS (XNU X N BSY)
Double: The double precision name is DBSYS.
Description

The Bessel function Y,(x) is defined to be

7/ 00
1 J. . . 1 I vt —vt —x sinh ¢
Y,(x) =7\ sin(xsin 8—v0)do— = e +te "cos(vm) |e dt
v(x) =) sin( )do-z), | (vr) ]
The variable v must satisfy 0 < v < 1. If this condition is not met, then BSY is set to - b. In addition, x must be in

[xm,xM] where x,, = 6( 16732) and x,, = 16°.Ifx < x5, then - b (b = AMACH2), the largest representable number)

is returned; and if x > x,,, then zero is returned.
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The algorithm is based on work of Cody and others, (see Cody et al. 1976; Cody 1969; NATS FUNPACK 1976). It
uses a special series expansion for small arguments. For moderate arguments, an analytic continuation in the
argument based on Taylor series with special rational minimax approximations providing starting values is
employed. An asymptotic expansion is used for large arguments.

Example

In this example, Yp.015625+,-1(0.0078125), v=1, 2, 3 is computed and printed.

USE BSYS_ I NT
USE UMACH | NT
IMPLICIT  NONE
!
INTEGER N
PARAMETER  (N=3)
!
INTEGER K, NOUT
REAL BSY(N), X,
!
XNU = 0. 015625
X = 0.0078125

CALL BSYS (XNU, X, N,

CALL UMACH (2, NOUT)
DO 10 K=1, N
VR TE ( NOUT, 99999)

Decl are vari abl es

XNU
Conmput e

BSY)

Print the results

XNU+K- 1, X, BSY(K)

10 CONTI NUE
99999 FORMAT (' Y sub ', F6.3, ' (', F6.3, ') ="', F10.3)
END
Output
Y sub 0.016 ( 0.008) = -3.189
Y sub 1.016 ( 0.008) =  -88.096
Y sub 2.016 ( 0.008) = -22901.732
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BSIS

Evaluates a sequence of modified Bessel functions of the first kind with real order and real positive arguments.

Required Arguments

XNU — Real argument which is the lowest order desired. (Input)
It must be greater than or equal to zero and less than one.

X — Real argument for which the sequence of Bessel functions is to be evaluated. (Input)

N — Number of elements in the sequence. (Input)

BSI — Vector of length N containing the values of the function through the series. (Output)
BSI (I ) contains the value of the Bessel function of order | - 1+ XNUatxforl =1to N

FORTRAN 90 Interface

Generic: CALL BSI S(XNU, X, N BSI )
Specific: The specific interface names are S_BSI Sand D_BSI S.

FORTRAN 77 Interface

Single: CALL BSI S(XNU, X, N BSI )
Double: The double precision name is DBSI S.
Description

The Bessel function /,(x) is defined to be

" sin(vr ) (© .
1v<x> :%J‘Oexcos 000S(V9)d9—<T>J‘0€ x cosh ¢ ! dt

The input x must be nonnegative and less than or equal to log(b) (b = AMACH2), the largest representable num-
ber). The argument v = XNU must satisfy 0 < v < 1.

Function BSI Sis based on a code due to Cody (1983), which uses backward recursion.
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Example

In this example, /,_4(10.0), v=1, ..., 10 is computed and printed.

10

99999

Output

sub
sub
sub
sub
sub
sub
sub
sub
sub
sub

USE BSI'S_I NT
USE UMVACH | NT

IMPLICIT NONE

Decl are vari abl es
| NTEGER N
PARAMETER ( N=10)

| NTEGER K, NOUT
REAL BSI (N, X XNU

Conmput e
XNU = 0.0
10.0

X
CALL BSI'S (XNU, X, N, BSI)

Print the results
CALL UMACH (2, NQUT)
DO 10 K=1, N
VWRI TE ( NOUT, 99999) XNU+K-1, X, BSI (K)
CONTI NUE
FORMAT (" | sub ', F6.3, ' (', F6.3, ') =",
END

0.000 (10.000) = 2815.717
1.000 (10.000) = 2670.988
2.000 (10.000) = 2281.519
3.000 (10.000) = 1758. 381
4.000 (10.000) = 1226.491
5.000 (10.000) =  777.188
6.000 (10.000) =  449.302
7.000 (10.000) =  238.026
8.000 (10.000) =  116.066
9.000 (10.000) = 52. 319
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BSIES

Evaluates a sequence of exponentially scaled modified Bessel functions of the first kind with nonnegative real

order and real positive arguments.

Required Arguments

XNU — Real argument which is the lowest order desired. (Input)
It must be at least zero and less than one.

X — Real positive argument for which the sequence of Bessel functions is to be evaluated. (Input)
It must be nonnegative.

N — Number of elements in the sequence. (Input)

BSI — Vector of length N containing the values of the function through the series. (Output)
BSI (I ) contains the value of the Bessel function of order | - 1 + XNUat x for I =1 to Nmultiplied by

exp(-X).

FORTRAN 90 Interface

Generic: CALL BSI ES(XNU X, N BSI )
Spedcific: The specific interface names are S_BSI ES and D_BSI ES.

FORTRAN 77 Interface

Single: CALL BSI ES(XNU, X, N BSI )
Double: The double precision name is DBSI ES.
Description

Function BSI ES evaluates € “1 ;. (x) for k=1, ..., n. For the definition of /,(x), see BSI S. The algorithm is

based on a code due to Cody (1983), which uses backward recursion.

Example

In this example, /,,_1(10.0), v=1, ..., 10 is computed and printed.
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USE BSI ES_| NT
USE UMACH | NT

IMPLICIT NONE

! Decl are vari abl es
| NTEGER N
PARAMETER ( N=10)

I NTEGER K, NOUT

REAL BSI (N, X, XNU

! Conmput e
XNU = 0.0
X =10.0

CALL BSIES (XNU, X, N, BSI)
! Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, N
VRI TE (NOUT, 99999) X, XNU+K-1, X, BSI (K)
10 CONTI NUE

99999 FORMAT (' exp(-', F6.3, ') * | sub ', F6.3, &
" (', F6.3, ') =', F6.3)
END

Output
exp(-10.000) * | sub 0.000 (10.000) = 0.128
exp(-10.000) * | sub 1.000 (10.000) = 0.121
exp(-10.000) * | sub 2.000 (10.000) = 0.104
exp(-10.000) * | sub 3.000 (10.000) = 0.080
exp(-10.000) * | sub 4.000 (10.000) = 0.056
exp(-10.000) * | sub 5.000 (10.000) = 0.035
exp(-10.000) * | sub 6.000 (10.000) = 0.020
exp(-10.000) * | sub 7.000 (10.000) = 0.011
exp(-10.000) * | sub 8.000 (10.000) = 0.005
exp(-10.000) * | sub 9.000 (10.000) = 0.002
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BSKS

Evaluates a sequence of modified Bessel functions of the second kind of fractional order.

Required Arguments

XNU — Fractional order of the function. (Input)
XNU must be less than one in absolute value.

X — Argument for which the sequence of Bessel functions is to be evaluated. (Input)
NIN — Number of elements in the sequence. (Input)

BK — Vector of length NI N containing the values of the function through the series. (Output)

FORTRAN 90 Interface

Generic: CALL BSKS (XNU, X, NI N, BK)
Spedcific: The specific interface names are S_BSKS and D_BSKS.

FORTRAN 77 Interface

Single: CALL BSKS (XNU, X NI' N, BK)
Double: The double precision name is DBSKS.
Description

The Bessel function K,(x) is defined to be

K,(x)= %evm/z[iJv<xezl> - Yv<xezl> ] for —z <arg xS%

Currently, v is restricted to be less than one in absolute value. A total of |n| values is stored in the array BK. For
positive n, BK(1) = K,,(x), BK(2) = K,, 1 1(x), ..., BK(n) = K, ,_1(X). For negative n, BK(1) = K,(x), BK(2) = K,,_1(X), ...,

BK(UND = Kysn1

BSKS is based on the work of Cody (1983).
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Comments

1. If NI Nis positive, BK(1) contains the value of the function of order XNU, BK(2) contains the value of
the function of order XNU + 1, ... and BK(NI N) contains the value of the function of order
XNU+ NI N- 1.

2. If NI Nis negative, BK(1) contains the value of the function of order XNU, BK(2) contains the value of
the function of order XNU- 1, ... and BK(ABS(NI N)) contains the value of the function of order
XNU+ NI N+ 1.

Example

In this example, K;,_1(10.0), v=1, ..., 10 is computed and printed.

USE BSKS_I NT
USE UMVACH | NT

IMPLICI T NONE

! Decl are vari abl es
| NTEGER NI N
PARAMETER (NI N=10)

I NTEGER K, NoUT

REAL BS(NIN), X, XNU

! Conmput e
XNU = 0.0
X =10.0

CALL BSKS (XNU, X, NIN, BS)
! Print the results
CALL UMACH (2, NQOUT)
DO 10 K=1, NIN
WRI TE ( NOUT, 99999) XNU+K-1, X, BS(K)

10 CONTI NUE
99999 FORMAT (' K sub ', F6.3, ' (', F6.3, ') ="', EI0.3)
END
Output
K sub 0.000 (10.000) = 0.178E-04
K sub 1.000 (10.000) = O0.186E- 04
K sub 2.000 (10.000) = 0.215E- 04
K sub 3.000 (10.000) = 0.273E- 04
K sub 4.000 (10.000) = 0.379E- 04
K sub 5.000 (10.000) = 0.575E- 04
K sub 6.000 (10.000) = 0.954E- 04
K sub 7.000 (10.000) = 0.172E-03
K sub 8.000 (10.000) = O0.336E-03
K sub 9.000 (10.000) = 0.710E-03
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BSKES

Evaluates a sequence of exponentially scaled modified Bessel functions of the second kind of fractional order.

Required Arguments

XNU — Fractional order of the function. (Input)
XNU must be less than 1.0 in absolute value.

X — Argument for which the sequence of Bessel functions is to be evaluated. (Input)
NIN — Number of elements in the sequence. (Input)

BKE — Vector of length NI N containing the values of the function through the series. (Output)

FORTRAN 90 Interface

Generic: CALL BSKES (XNU, X, NI N, BKE)
Specific: The specific interface names are S_BSKES and D_BSKES.

FORTRAN 77 Interface

Single: CALL BSKES (XNU, X, NI N BKE)
Double: The double precision name is DBSKES.
Description

Function BSKES evaluates €*K,, x_1(x), for k=1, ..., n. For the definition of K(x), see BSKS.

Currently, v is restricted to be less than 1 in absolute value. A total of |n| values is stored in the array BKE. For n
positive, BKE(1) contains €*K,,(x), BKE(2) contains e*K,,,1(x), ..., and BKE(N) contains €K, ,,_1(x). For n negative,

BKE(1) contains €*K,(x), BKE(2) contains €*K,,_4(x), ..., and BKE(|n|) contains €*K,,, . 1(x). This routine is particu-

larly useful for calculating sequences for large x provided n < x. (Overflow becomes a problem if n << x.) n must
not be zero, and x must not be greater than zero. Moreover, |v| must be less than 1. Also, when |n] is large com-

pared with x, |v+n| must not be so large that eme(x) = €XF< lv+nl ) / [ 2<XZ )IV+"| ] overflows.

BSKES is based on the work of Cody (1983).
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Comments

1.

If NI Nis positive, BKE(1) contains EXP(X) times the value of the function of order XNU, BKE(2) con-
tains EXP(X) times the value of the function of order XNU + 1, ..., and BKE(NI N) contains EXP(X)
times the value of the function of order XNU+ NI N- 1.

2. If NI Nis negative, BKE(1) contains EXP(X) times the value of the function of order XNU, BKE(2) con-
tains EXP(X) times the value of the function of order XNU- 1, ..., and BKE(ABS(NI N)) contains
EXP(X) times the value of the function of order XNU+ NI N+ 1.
Example

In this example, K;,_1,5(2.0), v=1, ..., 6 is computed and printed.

10
99999

Output

exp(
exp(
exp(
exp(
exp(
exp(

USE BSKES_| NT
USE UMVACH_| NT

IMPLICIT  NONE

Decl are vari abl es

INTEGER NN
PARAMETER (NI N=6)

I NTEGER K, NOUT

REAL BKE(NIN), X, XNU
Conmput e

XNU = 0.5

X =20

CALL BSKES (XNU, X, NN, BKE)

Print the results

CALL UMACH (2, NOUT)
DO 10 K=1, NN

WRI TE (NOUT, 99999) X, XNU+K-1, X, BKE(K)

CONTI NUE

FORMAT (' exp(', F6.3, ') * Ksub ', F6.3, &
" (', F6.3, ') ="', F8.3)

END

2.000) * K sub 0.500 ( 2.000) =  0.886

2.000) * Ksub 1.500 ( 2.000) =  1.329

2.000) * K sub 2.500 ( 2.000) =  2.880

2.000) * K sub 3.500 ( 2.000) =  8.530

2.000) * K sub 4.500 ( 2.000) = 32.735

2.000) * K sub 5.500 ( 2.000) = 155.837
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CBJS

Evaluates a sequence of Bessel functions of the first kind with real order and complex arguments.

Required Arguments

XNU — Real argument which is the lowest order desired. (Input)
XNU must be greater than -1/2.

Z — Complex argument for which the sequence of Bessel functions is to be evaluated. (Input)

N — Number of elements in the sequence. (Input)

CBS — Vector of length N containing the values of the function through the series. (Output)
CBS(I ) contains the value of the Bessel function of order XNU+1 - TatZforl =1toN

FORTRAN 90 Interface

Generic: CALL CBJS (XNU, Z, N CBS)
Specific: The specific interface names are S_CBJS and D_CBJS.

FORTRAN 77 Interface

Single: CALL CBJS (XNU, Z, N CBS)
Double: The double precision name is DCBJS.
Description

The Bessel function /,,(2) is defined to be

J(2) = lcos(z sin 6 — vO)dg — Smem [ zsinhi=vi gy

T
for largz| <75

This code is based on the code BESSCC of Barnett (1981) and Thompson and Barnett (1987).

This code computes J,, (z) from the modified Bessel function /,,(z), CBI S, using the following relation:
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i'I,(—iz) for —5<argz<m
J(2)=1 _
@) i3V, (—iz) for 7r<argz§32—7r
CBJSimplements the Yousif and Melka (Y&M) algorithm (Yousif and Melka (1997)) for approximating J,, (z) with a
Taylor series expansion when x ~ 0 or y ~ 0, where complex argument z = x + jy and “x ~ 0" == “|x| <amach( 4) ".
To be consistent with the existing CBJ S argument definitions, the original Y&M algorithm, which was limited to
integral order andto (x ~0and y = 0) or (y ~ 0 and x = 0), has been generalized to also work for integral and real
order v>-1,and for (x~0and y<0)and (y~0and x <0).

To deal with the Bessel function discontinuity that occurs at the negative x axis, the following procedure is used
for calculating the Y&M approximation of /,,(z) with argument z = x + jy when ((x ~ 0 and y < 0) or (y ~ 0 and x < 0)):

1. Calculate the Y&M approximation of /,, (- 2).

2. If(y>0), use forward rotation, otherwise use backward rotation, to calculate the Bessel function/,,(2),

where the “forward” and “backward” rotation transformations are defined as:
forward: /,,(2) = ¥ (- 2) = i?Y], (- 2)

backward: /,,(2) =€ VY, (- 2) =7 2Y] (- 2)

These definitions are based on Abromowitz and Stegun (1972), eq. 9.1.35:/,,(ze™ i) = e ™V} (2),

where m =1 represents forward transformation and m = - 1 represents backward transformation.
These specified rotations insure that the continuous rotation transformation /,,(- z) = J,,(z) does not
cross the negative x axis, so no discontinuity is encountered.

Comments

Informational Errors

Type Code Description

3 1 One of the continued fractions failed.

4 2 Only the first several entries in CBS are valid.
Example

In this example, Jo 34x-1(1.2+0.50), k=1, ..., 4 is computed and printed.

USE CBJS_ I NT
USE UMACH | NT
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10

99999

Output

[ S S Sy

sub
sub
sub
sub

IMPLICIT NONE

Decl are vari abl es
| NTEGER N
PARAMETER ( N=4)

| NTEGER K, NOUT
REAL XNU
COVPLEX CBS(N), Z
Conput e
XNU = 0.3
4 (1.2, 0.5)
CALL CBJS (XNU, Z, N, CBS)

Print the results
CALL UMACH (2, NQUT)
DO 10 K=1, N
VWRI TE ( NOUT, 99999) XNU+K-1, Z, CBS(K)

CONTI NUE
FORMAT (' J sub ', F6.3, ' ((', F6.3, ',', F6.3, &
"y) = (', F9.3, ',', F9.3, ')")

END
0.300 (( 1.200, 0.500)) = ( 0.774,  -0.107)
1.300 (( 1.200, 0.500)) = ( 0. 400, 0. 159)
2.300 (( 1.200, 0.500)) = ( 0. 087, 0. 092)
3.300 (( 1.200, 0.500)) = ( 0. 008, 0. 024)
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CBYS

Evaluates a sequence of Bessel functions of the second kind with real order and complex arguments.

Required Arguments

XNU — Real argument which is the lowest order desired. (Input)
XNU must be greater than -1/2.

Z — Complex argument for which the sequence of Bessel functions is to be evaluated. (Input)

N — Number of elements in the sequence. (Input)

CBS — Vector of length N containing the values of the function through the series. (Output)
CBS(I ) contains the value of the Bessel function of order XNU+1 - 1T atZforl =1to N

FORTRAN 90 Interface

Generic: CALL CBYS (XNU, Z, N CBS)
Specific: The specific interface names are S_CBYS and D_CBYS.

FORTRAN 77 Interface

Single: CALL CBYS (XNU, Z, N CBS)
Double: The double precision name is DCBYS.
Description

The Bessel function Y(2) is defined to be

Y (2) = Llgsin(z sin 0 — v0)d6 — [ [e” + ¢V cos(vm)]e TSN s

for |argz| <7

This code is based on the code BESSEC of Barnett (1981) and Thompson and Barnett (1987).

This code computes Y (z) from the modified Bessel functions / (z) and K {z), CBI S and CBKS, using the following

relation:
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YV(Zeil'i/Z) — €(V+1)m/2]v(z) _ %e—vni/sz(Z) for - < arg z S %

CBYS implements the Yousif and Melka (Y&M) algorithm (Yousif and Melka(2003)) for approximating Y, (2) with a
Taylor series expansion when x ~0 or y ~ 0, where complex argument z = x + jy and “x ~ 0" == "|x| <amach(4) ".
To be consistent with the existing CBYS argument definitions, the original Y&M algorithm, which was limited to

integral order andto (x ~0and y = 0) or (y ~ 0 and x = 0), has been generalized to also work for integral and real
order v>-1,and for (x~0and y<0)and (y~ 0 and x <0).

To deal with the Bessel function discontinuity occurring at the negative x axis, the following procedure is used for
calculating the Y&M approximation of ¥, (z) with argument z = x + jy when ((x ~ 0 and y < 0) or (y ~ 0 and x < 0)):

1. Calculate the Y&M approximation of Y, (- 2).

2. If(y>0), use forward rotation, otherwise use backward rotation, to calculate the Bessel function
Y, (2), where the “forward” and “backward” rotation transformations are defined as:

forward: Y, (2) = 2VV, (- 2) + 2i cos(vmy, (- 2)

backward: Y, (2) = /ZVYV(— 7) - 2icos(vmy, (- 2)
These definitions are based on Abromowitz and Stegun (1972), eq. 9.1.36:

Yv(ze'””i) =g mvri Y\ (2) + 2i sin(mvm) cot(vmy,, (), where m = 1 represents forward transformation
and m = - 1 represents backward transformation. These specified rotations insure that the continu-
ous rotation transformation Y, (- z) — Y, (2) does not cross the negative x axis, so no discontinuity is
encountered.

Comments

1. Workspace may be explicitly provided, if desired, by use of C2YS/ DC2Y. The reference is:

CALL C2YS(XNU, Z, N CBS, FK)
The additional argument is:

FK — complex work vector of length N.

2. Informational errors

Type Code Description
3 1 One of the continued fractions failed.
4 2 Only the first several entries in CBS are valid.
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Example

In this example, Yy 3, 4-1(1.2 +0.5), k=1, ..., 4 is computed and printed.

10
99999

Output

Y sub
Y sub
Y sub
Y sub

USE CBYS_| NT
USE UMACH | NT

IMPLICIT NONE

Decl are vari abl es
| NTEGER N
PARAMETER ( N=4)

| NTEGER K, NOUT
REAL XNU
COVPLEX CBS(N), Z

Conput e
XNU
z 1.2, 0.5)
CALL CBYS (XNU, Z, N, CBS)

0.3

Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, N
VRI TE (NOUT, 99999) XNU+K-1, Z, CBS(K)
CONTI NUE
FORMAT (" Y sub ', F6.3, ' ((', F6.3, ',', F6.3, &
y) = (', F9.3, ',', F9.3, ')")
END

0.300 (( 1.200, 0.500)) = ( -0.013, 0. 380)
1.300 (( 1.200, 0.500)) = ( -0.716, 0. 338)
2.300 (( 1.200, 0.500)) = ( -1.048, 0. 795)
3.300 (( 1.200, 0.500)) = ( -1.625, 3. 684)
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CBIS

Evaluates a sequence of modified Bessel functions of the first kind with real order and complex arguments.

Required Arguments

XNU — Real argument which is the lowest order desired. (Input)
XNU must be greater than -1/2.

Z — Complex argument for which the sequence of Bessel functions is to be evaluated. (Input)
N — Number of elements in the sequence. (Input)

CBS — Vector of length N containing the values of the function through the series. (Output)
CBS(l ) contains the value of the Bessel function of order XNU+ 1 - TatZforl =1toN

FORTRAN 90 Interface

Generic: CALL CBI S(XNU, Z, N CBS)
Specific: The specific interface names are S_CBI Sand D_CBI S.

FORTRAN 77 Interface

Single: CALL CBI S(XNU, Z, N CBS)
Double: The double precision name is DCBI S.
Description

The modified Bessel function /,(2) is defined to be

]V<Z> _ e—wri/ZJv<Ze7ri/2> for — 1< arg z < %
where the Bessel function J,(z) is defined in BSJS.

This code is based on the code BESSCC of Barnett (1981) and Thompson and Barnett (1987).

For large arguments, z, Temme's (1975) algorithm is used to find /,(2). The /,(z) values are recurred upward (if this

is stable). This involves evaluating a continued fraction. If this evaluation fails to converge, the answer may not be
accurate. For moderate and small arguments, Miller's method is used.
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Comments

Informational Errors

Type Code Description

3 1 One of the continued fractions failed.

4 2 Only the first several entries in CBS are valid.
Example

In this example, I 34, 1(1.2+0.5/), v=1, ..., 4 is computed and printed.

10

99999

Output

sub
sub
sub
sub

USE CBI'S_I NT
USE UMACH | NT

IMPLICIT NONE

Decl are vari abl es
| NTEGER N
PARAMETER ( N=4)

| NTEGER K, NOUT
REAL XNU
COVPLEX CBS(N), Z
Conput e
XNU = 0.3
Z = (1.2, 0.5)
CALL CBIS (XNU, Z, N, CBS)
Print the results
CALL UMACH (2, NQUT)
DO 10 K=1, N
VWRI TE ( NOUT, 99999) XNU+K-1, Z, CBS(K)

CONTI NUE
FORMAT (' | sub ', F6.3, ' ((', F6.3, ',', F6.3, &
")) = (', F9.3, ',', F9.3, "))

END
0.300 (( 1.200, 0.500)) = ( 1. 163, 0. 396)
1.300 (( 1.200, 0.500)) = ( 0. 447, 0. 332)
2.300 (( 1.200, 0.500)) = ( 0. 082, 0. 127)
3.300 (( 1.200, 0.500)) = ( 0. 006, 0. 029)
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CBKS

Evaluates a sequence of modified Bessel functions of the second kind with real order and complex arguments.

Required Arguments

XNU — Real argument which is the lowest order desired. (Input)
XNU must be greater than -1/2.

Z — Complex argument for which the sequence of Bessel functions is to be evaluated. (Input)
N — Number of elements in the sequence. (Input)

CBS — Vector of length N containing the values of the function through the series. (Output)
CBS(l ) contains the value of the Bessel function of order XNU+1 - TatZforl =1toN

FORTRAN 90 Interface

Generic: CALL CBKS (XNU, Z, N, CBS)
Specific: The specific interface names are S_CBKS and D_CBKS.

FORTRAN 77 Interface

Single: CALL CBKS (XNU, Z, N CBS)
Double: The double precision name is DCBKS.
Description

The Bessel function K,,(2) is defined to be

KV<Z> _ %evm'/Z[ Uv(zeniﬂ) _ YV<Zem'/2> ] for —7< arg z < %
where the Bessel function J,(2) is defined in CBJS and ¥,(2) is defined in CBYS.

This code is based on the code BESSCC of Barnett (1981) and Thompson and Barnett (1987).

For moderate or large arguments, z, Temme's (1975) algorithm is used to find K,(z). This involves evaluating a con-

tinued fraction. If this evaluation fails to converge, the answer may not be accurate. For small z, a Neumann series
is used to compute K,(z). Upward recurrence of the K(z) is always stable.
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Comments

2. Informational errors
Type Code Description
3 1 One of the continued fractions failed.
4 2 Only the first several entries in CBS are valid.
Example

1.

Workspace may be explicitly provided, if desired, by use of C2KS/ DC2KS. The reference is

CALL C2ZKS(XNU, Z, N, CBS, FK)
The additional argument is

FK — Complex work vector of length N.

In this example, Kp34, —1(1.2+0.5/), v=1, ..., 4is computed and printed.

USE UMACH | NT
USE CBKS_T NT

IMPLICI T NONE

Decl are vari abl es
| NTEGER N
PARAMETER ( N=4)

| NTEGER K, NOUT
REAL XNU
COVPLEX CBS(N), Z
Conmput e
XNU = 0.3
Z (1.2, 0.5)
CALL CBKS (XNU, Z, N, CBS)

Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, N
VRI TE (NOUT, 99999) XNU+K-1, Z, CBS(K)

10 CONTI NUE
99999 FORVAT (' Ksub ', F6.3, " ((', F6.3, ',', F6.3, &
‘)) = (', F9.3, ',", F9.3, ')")
END
Output
K sub 0.300 (( 1.200, 0.500)) = ( 0.246, -0.200)
K sub 1.300 (( 1.200, 0.500)) = ( 0.336, -0.362)
K sub 2.300 (( 1.200, 0.500)) = ( 0.587, -1.126)
K sub 3.300 (( 1.200, 0.500)) = ( 0.719, -4.839)
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Kelvin Functions

Routines
Evaluatesberg(x) . ......coveiiiiiiiiii e BERO 205
Evaluates beig(x) ... ...ooueeiiinini e BEIO 207
Evaluateskerg(x) ........coeiiiiiiiiiiiii e AKERO 209
Evaluates keig(X). . . .. vveeeeee e AKEIO 211
Evaluates ber’g(x). . . ... e BERPO 213
Evaluates beig(x) . ......cooeiiiiiiii e BEIPO 215
Evaluates ker'g(x) . . .. ..vueee e AKERPO 217
Evaluates kei’g(x) - . .. vvveeee e AKEIPO 219
Evaluatesbery(x) ........coooiiiiiiiiiii e BER1T 221
Evaluates beiq(x). . . ..o BEIT 223
Evaluates kerj(x). . ... e AKERT 225
Evaluates keiq(x) . . . ..vveeei e AKEIT 227
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Usage Notes

The notation used in this chapter follows that of Abramowitz and Stegun (1964). The Kelvin functions are related

to the Bessel functions by the following relations.

ber,x + ibei,x = Jv<xe3”i/4>

ker x + ikei x = ¢ ""?K, < xe™ >

The derivatives of the Kelvin functions are related to the values of the Kelvin functions by the following:

V2 ber’yx = ber,x + bei,x

V2bei'yx = — ber;x + bei;x

V2ker'yx = ker;x + kei;x

V2kei'px = —ker;x + kei;x
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Plots of ber,,(x), bei,(x), ker,(x) and kei,(x) for n =0, 1 follow:

150.0 -
Function
i /| berg
‘.'L' h'E'iu """
i £ | bery
;‘ bE,*ll T
75.0 - /
lllr?
/
] /
m ’
_ s
.-'r’ i
0.0 S T
T
_?S.CI I | T | | L L | T T | I I I | T T T
0.0 2.0 4.0 6.0 8.0 10.0

Figure 15, Plot of ber,,(x) and bei,(x)
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o 7] Function
kery, —
i keig -
] ker; -
27 keij ---
> 0.0 ity
- I|I \/"
024 |/
=0.4 T ] |': i T T T T T T T T T T T
0.0 23 2.0 7.5 10.0

Figure 16, Plot of ker ,(x) and kei,,(x)
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BERO

This function evaluates the Kelvin function of the first kind, ber, of order zero.

Function Return Value

BERO — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
ABS(X) must be less than 119.

FORTRAN 90 Interface

Generic: BERO (X)
Specific: The specific interface names are S_BERO and D_BERO.

FORTRAN 77 Interface

Single: BERO (X)
Double: The double precision name is DBERO.
Description

The Kelvin function berg(x) is defined to be %jo(xe3"i/4). The Bessel function Jo(x) is defined in BSJO0. Function
BERQO is based on the work of Burgoyne (1963).

Example

In this example, bery(0.4) is computed and printed.

USE BERO_I NT
USE UMACH | NT

IMPLICI T NONE

! Decl are vari abl es
| NTEGER NOUT
REAL VALUE, X
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! Conput e
X 0.4
VALUE = BERO( X)
! Print the results
CALL UMACH (2, NaouTt)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' BERO(', F6.3, ') ="', F6.3)
END

Output

BERO( 0.400) = 1.000

206



Kelvin Functions BEIO

BEIO

This function evaluates the Kelvin function of the first kind, bei, of order zero.

Function Return Value

BEI0 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
ABS(X) must be less than 119.

FORTRAN 90 Interface

Generic: BEIO (X)

Specific: The specific interface names are S_BEIO and D_BEIO.

FORTRAN 77 Interface

Single: BEIO (X)
Double: The double precision name is DBEIO.
Description

The Kelvin function beiy(x) is defined to be Sjo(xe3"i/4). The Bessel function Jo(x) is defined in BSJO0. Function

BEI O is based on the work of Burgoyne (1963).

In BEI 0, x must be less than 119.

Example

In this example, beip(0.4) is computed and printed.

USE BEI 0_| NT
USE UMACH | NT

IMPLICIT  NONE
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! Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

! Conmput e
X =0.4
VALUE = BEI 0( X)

! Print the results
CALL UMACH (2, NauT)
VRI TE (NOUT, 99999) X, VALUE

99999 FORMAT (' BEIO(', F6.3, ') ="', F6.3)
END

Output

BEI O( 0.400) = 0.040
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AKERO

This function evaluates the Kelvin function of the second kind, ker, of order zero.

Function Return Value

AKERO — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
It must be nonnegative.

FORTRAN 90 Interface

Generic: AKERO (X)
Specific: The specific interface names are S_AKERO and D_AKERQ.

FORTRAN 77 Interface

Single: AKERO (X)
Double: The double precision name is DKERO.
Description

The modified Kelvin function kerg(x) is defined to be %Ko(xe"i/“). The Bessel function Kp(x) is defined in BSKO.

Function AKERQO is based on the work of Burgoyne (1963). If x < 0, then NaN (not a number) is returned. If
x = 119, then zero is returned.

Example

In this example, kerg(0.4) is computed and printed.

USE AKERO_| NT
USE UMACH_| NT

IMPLICI T NONE
! Decl are vari abl es
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I NTEGER NOUT

REAL VALUE, X
|

X =04

VALUE = AKERO( X)

CALL UMACH (2, NOUT)
VR TE (NOUT, 99999) X, VALUE

99999 FORMAT (' AKERO(', F6.3, ')
END

Output

AKERO( 0.400) = 1.063

Conput e

Print the results

="', F6.3)
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AKEIO

This function evaluates the Kelvin function of the second kind, kei, of order zero.

Function Return Value

AKEI0 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
It must be nonnegative and less than 119.

FORTRAN 90 Interface

Generic: AKEIO (X)
Specific: The specific interface names are S_AKEIO and D_AKEIO.

FORTRAN 77 Interface

Single: AKEIO (X)
Double: The double precision name is DKEIO.
Description

The modified Kelvin function keig(x) is defined to be SKO(xe“i/4). The Bessel function Kp(x) is defined in BSKO. Func-
tion AKEI 0 is based on the work of Burgoyne (1963).

In AKEI 0, x must satisfy 0 < x <119.1f x <0, then NaN (not a number) is returned. If x = 119, then zero is
returned.

Example

In this example, keig(0.4) is computed and printed.

USE AKEI O_I NT
USE UMACH_| NT
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IMPLICIT  NONE
I NTEGER NOUT

REAL VALUE, X
!

X =04

VALUE = AKEI 0( X)

CALL UMACH (2, NOUT)

VR TE (NOUT, 99999) X, VALUE
99999 FORMAT (' AKEIO(', F6.3, ')

END

Output

AKEI O( 0.400) = -0.704

Decl are vari abl es

Conput e

Print the results

="', F6.3)
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BERPO

This function evaluates the derivative of the Kelvin function of the first kind, ber, of order zero.

Function Return Value

BERPO — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: BERPO (X)
Specific: The specific interface names are S_BERPO and D_BERPO.

FORTRAN 77 Interface

Single: BERPO (X)
Double: The double precision name is DBERPO.
Description

The function ber’n(x) is defined to be

%bero (x)

where berg(x) is a Kelvin function, see BERO. Function BERPO is based on the work of Burgoyne (1963).

If [x] > 119, then NaN (not a number) is returned.

Example

In this example, ber’(0.6) is computed and printed.

USE BERPO_| NT
USE UMACH_| NT
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IMPLICIT  NONE
I NTEGER NOUT

REAL VALUE, X
|

X = 0.6

VALUE = BERPO( X)

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE

99999 FORMAT (' BERPO(', F6.3, ')
END

Output

BERPO( 0.600) = -0.013

Decl are vari abl es

Conmput e

Print the results

="', F6.3)
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BEIPO

This function evaluates the derivative of the Kelvin function of the first kind, bei, of order zero.

Function Return Value

BEIPO — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: BEIPO (X)
Specific: The specific interface names are S_BEIPO and D_BEIPO.

FORTRAN 77 Interface

Single: BEIPO (X)
Double: The double precision name is DBEIPO.
Description

The function bei’y(x) is defined to be

d%beio (x)

where beig(x) is a Kelvin function, see BEI 0. Function BEI PO is based on the work of Burgoyne (1963).

If x| > 119, then NaN (not a number) is returned.

Example

In this example, bei’((0.6) is computed and printed.

USE BEI PO_I NT
USE UMACH_| NT
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IMPLICIT  NONE
I NTEGER NOUT

REAL VALUE, X
|

X = 0.6

VALUE = BEI PO( X)

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE

99999 FORMAT (' BEIPO(', F6.3, ')
END

Output

BEI PO( 0.600) = 0.300

Decl are vari abl es

Conmput e

Print the results

="', F6.3)
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AKERPO

This function evaluates the derivative of the Kelvin function of the second kind, ker, of order zero.

Function Return Value

AKERPO — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
It must be nonnegative.

FORTRAN 90 Interface

Generic: AKERPO (X)

Specific: The specific interface names are S_AKERPO and D_AKERPO.

FORTRAN 77 Interface

Single: AKERPO (X)
Double: The double precision name is DKERPO.
Description

The function ker’y(x) is defined to be

%kero ( X )

where kerg(x) is a Kelvin function, see AKERO. Function AKERPO is based on the work of Burgoyne (1963). If x <0,

then NaN (not a number) is returned. If x> 119, then zero is returned.

Example

In this example, ker’(0.6) is computed and printed.

USE AKERPO_| NT
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USE UMACH | NT

IMPLICI T NONE
! Decl are vari abl es

I NTEGER NOUT

REAL VALUE, X, AKERPO

! Conput e
X = 0.6
VALUE = AKERPO( X)

! Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE

99999 FORMAT (' AKERPO(', F6.3, ') ="', F6.3)
END

Output

AKERPO( 0.600) = -1.457
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AKEIPO

This function evaluates the derivative of the Kelvin function of the second kind, kei, of order zero.

Function Return Value

AKEIPO — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
It must be nonnegative.

FORTRAN 90 Interface

Generic: AKEIPO (X)
Specific: The specific interface names are S_AKEIPO and D_AKEIPO.

FORTRAN 77 Interface

Single: AKEIPO (X)
Double: The double precision name is DKEIPO.
Description

The function kei’p(x) is defined to be

d%;keio ( x )

where keig(x) is a Kelvin function, see AKEI 0. Function AKEI PO is based on the work of Burgoyne (1963).

If x <0, then NaN (not a number) is returned. If x > 119, then zero is returned.

Example

In this example, kei’5(0.6) is computed and printed.
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USE AKEI PO_I NT
USE UMACH T NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X, AKEl PO

! Conput e
X = 0.6
VALUE = AKEI PO( X)

! Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE

99999 FORMAT (' AKEIPO(', F6.3, ') ="', F6.3)
END

Output

AKEI PO( 0.600) = 0.348
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BERI

This function evaluates the Kelvin function of the first kind, ber, of order one.

Function Return Value

BER1 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: BER1 (X)
Specific: The specific interface names are S_BER1 and D_BER1.

FORTRAN 77 Interface

Single: BER1 (X)
Double: The double precision name is DBERL.
Description

The Kelvin function ber4(x) is defined to be R/, (xe /4 The Bessel function J1(x) is defined in BSJ1. Function
BER1 is based on the work of Burgoyne (1963).

If x| > 119, then NaN (not a number) is returned.

Example

In this example, ber4(0.4) is computed and printed.

USE BERL_I NT
USE UMACH | NT

IMPLICIT  NONE

! Decl are vari abl es
| NTEGER NOUT
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REAL VALUE, X

! Conmput e
X = 0.4
VALUE = BERL( X)

! Print the results
CALL UMACH (2, NauT)
VRI TE (NOUT, 99999) X, VALUE

99999 FORMAT (' BERL(', F6.3, ') ="', F6.3)
END

Output

BERL( 0.400) = -0.144
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BEIT

This function evaluates the Kelvin function of the first kind, bei, of order one.

Function Return Value

BEI1 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: BEI 1 (X)
Specific: The specific interface names are S_BEIl 1 and D_BEI 1.

FORTRAN 77 Interface

Single: BEI 1 (X)
Double: The double precision name is DBEI 1.
Description

The Kelvin function bei;(x) is defined to be 811(Xe3"i/4). The Bessel function /;(x) is defined in BSJ 1. Function
BEI 1 is based on the work of Burgoyne (1963).

If x| > 119, then NaN (not a number) is returned.

Example

In this example, bei;(0.4) is computed and printed.

USE BEI 1_I NT
USE UMACH | NT

IMPLICIT  NONE

! Decl are vari abl es
| NTEGER NOUT
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REAL VALUE, X
! Conmput e
X =0.4
VALUE = BEl 1( X)

CALL UMACH (2, NOUT)

WRI TE (NOUT, 99999) X, VALUE

99999 FORMAT (' BEI1(', F6.3, ')
D

EN

Output

BEI 1( 0. 400)

= 0. 139

Print the results

F6. 3)
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AKERI

This function evaluates the Kelvin function of the second kind, ker, of order one.

Function Return Value

AKER1 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
It must be nonnegative.

FORTRAN 90 Interface

Generic: AKER1 (X)
Specific: The specific interface names are S_AKER1 and D_AKERL1.

FORTRAN 77 Interface

Single: AKER1 (X)
Double: The double precision name is DKERL1.
Description

The modified Kelvin function kery(x) is defined to be ¢ ™? R K, <xe’”/4>. The Bessel function K;(x) is defined in
BSK1. Function AKERL is based on the work of Burgoyne (1963).

If x <0, then NaN (not a number) is returned. If x = 119, then zero is returned.

Example

In this example, ker4(0.4) is computed and printed.

USE AKERL | NT
USE UMACH_I NT

IMPLICIT  NONE
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! Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

! Conmput e
X =0.4
VALUE = AKERL( X)

! Print the results
CALL UMACH (2, NauT)
VRI TE (NOUT, 99999) X, VALUE

99999 FORMAT (' AKERL(', F6.3, ') ="', F6.3)
END

Output

AKERL( 0.400) = -1.882
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AKEII

This function evaluates the Kelvin function of the second kind, kei, of order one.

Function Return Value

AKEI1 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
It must be nonnegative.

FORTRAN 90 Interface

Generic: AKEI 1 (X)
Specific: The specific interface names are S_AKEIl 1 and D_AKEI 1.

FORTRAN 77 Interface

Single: AKEIl 1 (X)
Double: The double precision name is DKEI 1.
Description

The modified Kelvin function kei4(x) is defined to be ¢ 2 & K, (xe’”m > The Bessel function K;(x) is defined in

BSK1. Function AKEI 1 is based on the work of Burgoyne (1963).

If x <0, then NaN (not a number) is returned. If x = 119, then zero is returned.

Example

In this example, kei;(0.4) is computed and printed.

USE UMACH | NT
USE AKEI 1_| NT

IMPLICIT  NONE
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I NTEGER
REAL

X
VALUE

CALL UMACH (2, NOUT)

WRI TE (NOUT, 99999) X, VALUE

99999 FORMAT (' AKEI1(', F6.3, ')
D

EN

Output

AKEI 1( 0. 400)

NOUT
VALUE, X

0.4
AKEI 1( X)

= -1.444

Decl are vari abl es

Conmput e

Print the results

="', F6.3)
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Airy Functions

Routines

8.1

Real Airy Functions

Evaluates Ai(X) ..o vvte ettt e Al
Evaluates Bi(X) .....ovriie e Bl
Evaluates Ai'(X) . . oo vttt e e AID
Evaluates Bi'(x) . ... e BID
Evaluates exponentially scaled Ai(X) .........cooiieiiiineennn... AlE
Evaluates exponentially scaled Bi(x) ........... ..., BIE
Evaluates exponentially scaled Ai’(X). . .. ....coveiineiineennn... AIDE
Evaluates exponentially scaled Bi'(x). . .. ..., BIDE

8.2 Complex Airy Functions

Evaluates Ai(Z) ..o vov et CAl
Evaluates Bi(z). . . o oo oottt e CBI
Evaluates Ai’(Z) . . o oo oottt e CAID
Evaluates Bi’(z) . . oo oot et e e e CBID

230
232
234
236
238
240
242
244

246
248
250
252

229



Airy Functions Al

Al

This function evaluates the Airy function.

Function Return Value

Al — Function value. (Output)

Required Arguments

X — Argument for which the Airy function is desired. (Input)

FORTRAN 90 Interface

Generic: Al (X
Specific: The specific interface names are S_Al and D_Al .

FORTRAN 77 Interface

Single: Al (X)
Double: The double precision name is DAl .
Description

The Airy function Ai(x) is defined to be

. _1 ” 13 _ [ x 2 32
Al(x)—ﬁJ-OCOS<xt+§l )dt— FKU?’(?X >

The Bessel function K (x) is defined in BSKS.

If x < — 1.31£ 23 then the answer will have no precision. If x < —1.31¢ ', the answer will be less accurate than half
precision. Here, e = AMACH4) is the machine precision. Finally, x should be less than xpyax SO the answer does not
underflow. Very approximately, Xpmayx = {- 1.5 In s}, where s = AMACH( 1) , the smallest representable positive
number. If underflows are a problem for large x, then the exponentially scaled routine Al E should be used.
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Comments

Informational Error

Type Code Description

2 1 The function underflows because Xis greater than XMAX, where

XMAX = (- 3/2 In(AMACH(1))) 2/3.

Example

In this example, Ai(-4.9) is computed and printed.

99999

USE Al _INT
USE UMACH | NT

IMPLICI T NONE
Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

Conput e
X =-4.9
VALUE = Al (X)

Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
FORVAT (* Al(', F6.3, ') ="', F6.3)
END

Output

Al (-4.900) = 0.375
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Bl

This function evaluates the Airy function of the second kind.

Function Return Value

BI — Function value. (Output)

Required Arguments

X — Argument for which the Airy function value is desired. (Input)

FORTRAN 90 Interface

Generic: Bl (X
Specific: The specific interface names are S_BI and D_BI .

FORTRAN 77 Interface

Single: Bl (X)
Double: The double precision name is DBI .
Description

The Airy function of the second kind Bi(x) is defined to be

00 00
- _1 _ 13 1] o 13
Bi(x) = ﬂjoexp<xt 3t >dt+ﬂIOSIH<xt+3t >dt
It can also be expressed in terms of modified Bessel functions of the first kind, /,(x), and Bessel functions of the
first kind, /,(x) (see BSI S and BSJS):

. 2 32 2 32

and
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Bi(x) = V_% [J—1/3<%|X|3/2> —J1/3<%|x|3/2> ] for x <0

Let e = AMACH4), the machine precision. If x < —1.31¢ 27 then the answer will have no precision. If x < —1.31¢ '3,

the answer will be less accurate than half precision. In addition, x should not be so large that exp[ (2/3)x3/2]
overflows. If overflows are a problem, consider using the exponentially scaled form of the Airy function of the sec-
ond kind, Bl E, instead.

Example
In this example, Bi(-4.9) is computed and printed.

USE Bl _I NT
USE UMACH | NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

! Conmput e
X =-4.9
VALUE = BI ( X)

! Print the results
CALL UMACH (2, NOUT)
VRI TE ( NOUT, 99999) X, VALUE

99999 FORMAT (' BI(', F6.3, ') ="', F6.3)
END

Output

Bl (-4.900) = -0.058
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AID

This function evaluates the derivative of the Airy function.

Function Return Value

AID — Function value. (Output)

Required Arguments

X — Argument for which the Airy function value is desired. (Input)

FORTRAN 90 Interface

Generic: Al D(X)
Specific: The specific interface names are S_Al Dand D_Al D.

FORTRAN 77 Interface

Single: Al D(X)
Double: The double precision name is DAl D.
Description

The function Ai’(x) is defined to be the derivative of the Airy function, Ai(x) (see Al ).

If x < — 1.31£ 23 then the answer will have no precision. If x < —1.31¢ ', the answer will be less accurate than half
precision. Here, € = AMACH4) is the machine precision. Finally, x should be less than xy,ax SO that the answer

does not underflow. Very approximately, Xxmax = {- 1.5 In s}, where s = AMACH(1), the smallest representable posi-
tive number. If underflows are a problem for large x, then the exponentially scaled routine Al DE should be used.

Comments

Informational Error
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Type Code Description

2 1 The function underflows because Xis greater than XMAX, where
XMAX = - 3/2 In(AMACH(1)).

Example
In this example, Ai’(-4.9) is computed and printed.

USE Al D I NT
USE UMACH | NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

! Conmput e
X =-4.9
VALUE = Al D( X)

! Print the results
CALL UMACH (2, NOUT)
VRI TE ( NOUT, 99999) X, VALUE

99999 FORMAT (' AID(', F6.3, ') ="', F6.3)
END

Output

Al D(-4.900) = 0.147
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BID

This function evaluates the derivative of the Airy function of the second kind.

Function Return Value

BID — Function value. (Output)

Required Arguments

X — Argument for which the Airy function value is desired. (Input)

FORTRAN 90 Interface

Generic: Bl D(X)
Specific: The specific interface names are S_BI Dand D_BI D.

FORTRAN 77 Interface

Single: Bl D(X)
Double: The double precision name is DBI D.
Description

The function Bi’(x) is defined to be the derivative of the Airy function of the second kind, Bi(x) (see BI ).

If x < — 1.31£ 23 then the answer will have no precision. If x < —1.31¢ 3, the answer will be less accurate than half

32

precision. In addition, x should not be so large that exp[ (2/3)x ] overflows. If overflows are a problem, con-

sider using Bl DE instead. Here, € = AMACH4) is the machine precision.

Example
In this example, Bi’ (-4.9) is computed and printed.

USE BI D_|I NT
USE UMACH | NT

IMPLICIT NONE
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I NTEGER NOUT

REAL VALUE, X
!

X =-4.9

VALUE = BI D( X)

CALL UMACH (2, NOUT)

WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' BID(', F6.3, ') =

END

Output

Bl (- 4. 900) = 0. 827

Decl are vari abl es

Conmput e

Print the results

", F6.3)
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AIE

This function evaluates the exponentially scaled Airy function.

Function Return Value

AIE — Function value. (Output)
The Airy function for negative arguments and the exponentially scaled Airy function,

eCAI(X), for positive arguments where

;= %Xyz

Required Arguments

X — Argument for which the Airy function value is desired. (Input)

FORTRAN 90 Interface

Generic: Al E (X)
Specific: The specific interface names are S_Al Eand D_Al E.

FORTRAN 77 Interface

Single: Al E (X)
Double: The double precision name is DAl E.
Description

The exponentially scaled Airy function is defined to be

Ai(x) if x<0

AIE (x) = 6[2/3]x3/2

Ai(x) if x>0

If x < —1.31¢ %7, then the answer will have no precision. If x < —1.31¢'?, then the answer will be less accurate
than half precision. Here, e = AMACH4) is the machine precision.
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Example
In this example, Al E(0.49) is computed and printed.

USE Al E_I NT
USE UMACH | NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

! Conmput e
X = 0.49
VALUE = Al E(X)

! Print the results
CALL UMACH (2, NOUT)
VRI TE ( NOUT, 99999) X, VALUE

99999 FORMAT (' AIE(', F6.3, ') ="', F6.3)
END

Output

Al E( 0.490) = 0.294
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BIE

This function evaluates the exponentially scaled Airy function of the second kind.

Function Return Value

BIE — Function value. (Output)

The Airy function of the second kind for negative arguments and the exponentially scaled Airy func-

tion of the second kind, e%Bi(X), for positive arguments where

;= _%Xyz

Required Arguments

X — Argument for which the Airy function value is desired. (Input)

FORTRAN 90 Interface
Generic: Bl E (X)

Specific: The specific interface names are S_BlI Eand D_BI E.

FORTRAN 77 Interface

Single: Bl E (X)
Double: The double precision name is DBl E.
Description

The exponentially scaled Airy function of the second kind is defined to be

Bi(x) if x<0
BIE(x) = 32
( ) 67[2/3])( Bi(x) if x>0

If x < —1.31¢ %7, then the answer will have no precision. If x < —1.31¢'?, then the answer will be less accurate

than half precision. Here, € = AMACH4) is the machine precision.

240



Airy Functions BIE

Example
In this example, Bl E(0.49) is computed and printed.

USE BI E_I NT
USE UMACH | NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

! Conmput e
X = 0.49
VALUE = BI E( X)

! Print the results
CALL UMACH (2, NOUT)
VRI TE ( NOUT, 99999) X, VALUE

99999 FORMAT (' BIE(', F6.3, ') ="', F6.3)
END

Output

BI E( 0.490) = 0.675
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AIDE

This function evaluates the exponentially scaled derivative of the Airy function.

Function Return Value

AIDE — Function value. (Output)
The derivative of the Airy function for negative arguments and the exponentially scaled derivative of

the Airy function, eCAI"(X), for positive arguments where
2 y3/2
¢(=—-3X

Required Arguments

X — Argument for which the Airy function value is desired. (Input)

FORTRAN 90 Interface

Generic: Al DE (X)
Specific: The specific interface names are S_Al DE and D_Al DE.

FORTRAN 77 Interface

Single: Al DE (X)
Double: The double precision name is DAl DE.
Description

The exponentially scaled derivative of the Airy function is defined to be

Ai'(x) if x<0

372

AIDE(X>: e[2/3]x Ai’(X) if x>0

If x < —1.31¢ %7, then the answer will have no precision. If x < —1.31¢'?, then the answer will be less accurate
than half precision. Here, e = AMACH4) is the machine precision.
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Example

In this example, Al DE(0.49) is computed and printed.

99999

USE Al DE_I NT
USE UMACH | NT

IMPLICI T NONE
Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

Conmput e
X = 0.49
VALUE = Al DE( X)

Print the results
CALL UMACH (2, NOUT)
VRI TE ( NOUT, 99999) X, VALUE

Output

Al DE(

FORMAT (' AIDE(', F6.3, ') ="', F6.3)
END
0.490) = -0.284
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BIDE

This function evaluates the exponentially scaled derivative of the Airy function of the second kind.

Function Return Value

BIDE — Function value. (Output)
The derivative of the Airy function of the second kind for negative arguments and the exponentially
scaled derivative of the Airy function of the second kind, €CBI"(X), for positive arguments where

C: _%X3/2

Required Arguments

X — Argument for which the Airy function value is desired. (Input)

FORTRAN 90 Interface

Generic: Bl DE (X)
Specific: The specific interface names are S_BI DE and D_BI DE.

FORTRAN 77 Interface

Single: Bl DE (X)
Double: The double precision name is DBI DE.
Description

The exponentially scaled derivative of the Airy function of the second kind is defined to be

Bi’(x) if x<0

BIDE(x) = JREARE

Bi'(x) if x >0

If x < —1.31¢ %7 then the answer will have no precision. If x < —1.31¢'?, then the answer will be less accurate
than half precision. Here, € = AMACH4) is the machine precision.
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Example

In this example, Bl DE(0.49) is computed and printed.

99999

USE BI DE_I NT
USE UMACH | NT

IMPLICI T NONE
Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

Conmput e
X = 0.49
VALUE = BI DE( X)

Print the results
CALL UMACH (2, NOUT)
VRI TE ( NOUT, 99999) X, VALUE

Output

BI DE(

FORVAT (' BIDE(', F6.3, ') ="', F6.3)
END
0.490) = 0.430
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CAl

This function evaluates the Airy function of the first kind for complex arguments.

Function Return Value

CAl — Complex function value. (Output)

Required Arguments

Z — Complex argument for which the Airy function is desired. (Input)

Optional Arguments

SCALING — Logical argument specifying whether or not the scaling function will be applied to the Ai(z)

function value. (Input)
Default: SCALI NG=. f al se.

FORTRAN 90 Interface

Generic: CAl 2)
Specific: The specific interface names are C_CAl and Z_CAl .
Description

The Airy function Ai(2) is a solution of the differential equation

dPw _
dzz_ZW

The mathematical development and algorithm, 838, used here are found in the work by Fabijonas et a/. Function
CAl returns the complex values of Ai(2).
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An optional argument, SCALI NG defines a scaling function s(z) that multiplies the results. This scaling function is

Comments

Informational Errors

Type Code

2 1
2 2
Example

Scaling Action
.fal se. s(z):1
.true. /31572
s(z) =
Description

The real part of (2/3) X 73/2 was too large in the region where the func-
tion is exponentially small; function values were set to zero to avoid
underflow. Try supplying the optional argument SCALI NG

The real part of (2/3) X 73/2 was too large in the region where the func-
tion is exponentially large; function values were set to zero to avoid
underflow. Try supplying the optional argument SCALI NG

In this example, Ai(0.49, 0.49) is computed and printed.

USE CAl _I NT
USE UMACH_| NT
IMPLI CI T NONE

| NTEGER NOUT

COVPLEX Y, Z, W

Decl are vari abl es

Conput e

W= CWPLX(0. 49, 0. 49)

Y = CAl(W

Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99998) W Y

99998 FORMAT(12x,"CAI(",F6.3 ", ", F6.3 ") = ( ",F6.3, ", ",F6.3," )" )

End

Output

CAI ( 0. 490,

0.490) = ( 0.219, -0.113 )
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CBI

This function evaluates the Airy function of the second kind for complex arguments.

Function Return Value

CBI — Complex function value. (Output)

Required Arguments

Z — Complex argument for which the Airy function value is desired. (Input)

Optional Arguments

SCALING — Logical argument specifying whether or not the scaling function will be applied to the Ai(z)
function value used to compute Bi(2). (Input)
Default: SCALI NG=. f al se.

FORTRAN 90 Interface

Generic: CBl (2)
Specific: The specific interface names are C_CBl and Z_CBI .
Description

The Airy function of the second kind Bi(2) is expressed using the connection formula

Bl(Z) _ e_ﬂ:i/6Ai(Z€_2ﬂ:i/3) + e?l'i/6Ai(ZeZ7Ti/3)

using function CAl for Ai(2).
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An optional argument, SCALI NG defines a scaling function s(z) that multiplies the results. This scaling function is

Scaling Action

.fal se. s(z):1

.true. /31572
s(z) =

The values for Bi(z) are returned with the scaling for Ai(2).

Comments

Informational Errors

Type Code Description

2 1 The real part of (2/3) X 73/2) was too large in the region where the func-
tion is exponentially small; function values were set to zero to avoid
underflow. Try supplying the optional argument SCALI NG

2 2 The real part of (2/3) X Z®/? was too large in the region where the func-
tion is exponentially large; function values were set to zero to avoid
underflow. Try supplying the optional argument SCALI NG

Example
In this example, Bi(0.49, 0.49) is computed and printed.

USE CBI _I NT
USE UMVACH I NT
I MPLI CI T NONE

! Decl are vari abl es
| NTEGER NOUT
COVPLEX Y, Z, W

! Conput e
W = CMPLX(0. 49, 0. 49)
Y = CBI (W

! Print the results
CALL UVACH (2, NOUT)
WRI TE (NOUT, 99998) W Y

99998 FORMAT( 12x,"CBI(",F6.3 ", ",F6.3 ") = ( ",F6.3, ", ",F6.3," )" )
End

Output

CBI( 0.490, 0.490) = ( 0.802, 0.243)
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CAID

This function evaluates the derivative of the Airy function of the first kind for complex arguments.

Function Return Value

CAID — Complex function value. (Output)

Required Arguments

Z — Complex argument for which the Airy function value is desired. (Input)

Optional Arguments

SCALING — Logical argument specifying whether or not the scaling function will be applied to the Ai’(2)

function value. (Input)
Default: SCALI NG=. f al se.

FORTRAN 90 Interface

Generic: C CAID©
Specific: The specific interface names are C_CAl Dand Z_CAI D.
Description

The function Ai’(2) is defined to be the derivative of the Airy function, Ai(z) (see CAl ).

An optional argument, SCALI NG defines a scaling function s(z) that multiplies the results. This scaling function is

Scaling Action

.fal se. s(z)=l

. true. 32
S(Z) _ e[2/3]
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Comments

Informational Errors

Type Code Description

2 1 The real part of (2/3) X 7312 was too large in the region where the func-
tion is exponentially small; function values were set to zero to avoid
underflow. Try supplying the optional argument SCALI NG

2 2 The real part of (2/3) X Z®/? was too large in the region where the func-
tion is exponentially large; function values were set to zero to avoid
underflow. Try supplying the optional argument SCALI NG

Example

In this example, Ai (0.49, 0.49) and Ai’(0.49, 0.49) are computed and printed.

USE CAI D_I NT
USE CAl _TNT

USE UMACH_| NT
IMPLICI T NONE

! Decl are vari abl es
| NTEGER NOUT
COVPLEX Y, Z, W Z

! Conmput e
W= CMPLX(O0. 49, 0. 49)
Y = CAI (W
Z = CAID(W

! Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99998) W Y

VWRI TE (NOUT, 99997) W Z
1

99997 FORMAT(12x,"CAID(",F6.3 ", ",F6.3 ") = ( ",F6.3, ", ",F6.3," )" )
99998 FORMAT(12x,"CAI(",F6.3 ", ", F6.3 ") = ( ",F6.3, ", ",F6.3," )" )
End
Output

CAI( 0.490, 0.490) = ( 0.219, -0.113)
CAID( 0.490, 0.490) = ( -0.240, 0.064 )

251



Airy Functions CBID

CBID

This function evaluates the derivative of the Airy function of the second kind for complex arguments.

Function Return Value

CBID — Complex function value. (Output)

Required Arguments

Z — Complex argument for which the Airy function value is desired. (Input)

Optional Arguments

SCALING — Logical argument specifying whether or not the scaling function will be applied to the Ai’(2)
function value used to compute Bi’(z). (Input)
Default: SCALI NG=. f al se.

FORTRAN 90 Interface

Generic: CBI D(2)
Specific: The specific interface names are C_CBI Dand Z_CBI D.
Description

The function Bi’(z) is defined to be the derivative of the Airy function of the second kind, Bi(2), (see CBI ),
expressed using the connection formula

Bi’( z) = ¢TI0 (272 + STIOAT (2627

using function CAI Dfor Ai’(2).
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An optional argument, SCALI NG defines a scaling function s(z) that multiplies the results. This scaling function is

Scaling Action

.fal se. s(z):1

.true. /31572
s(z) =

The values for Bi’(2) are returned with the scaling for Ai’(z).

Comments

Informational Errors

Type Code Description

2 1 The real part of (2/3) X 73/2) was too large in the region where the func-
tion is exponentially small; function values were set to zero to avoid
underflow. Try supplying the optional argument SCALI NG

2 2 The real part of (2/3) X Z®/? was too large in the region where the func-
tion is exponentially large; function values were set to zero to avoid
underflow. Try supplying the optional argument SCALI NG

Example

In this example, Bi’(0.49, 0.49) is computed and printed.

99998

USE CBI D_I NT
USE UMACH | NT
I MPLI CI T NONE

Decl are vari abl es
| NTEGER NOUT
COVPLEX Y, Z, W
Conput e
W = CMPLX(0. 49, 0. 49)
Y = CBID(W

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99998) W Y

FOQMAT(:LZX,"CBlD(",FG.3 u' ",F6.3 u) - ( “,FG.B, u' ",FG.B," )u )
End

Print the results

Output

CBID( 0.490, 0.490) = ( 0.411, 0.180 )
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Elliptic Integrals

Routines

Evaluates the complete elliptic integral of the first kind, K(x)........... ELK 258
Evaluates the complete elliptic integral of the second kind, E(x). . . ..... ELE 260
Evaluates Carlson’s elliptic integral of the first kind, Rg(x, y,2) ........ ELRF 262
Evaluates Carlson’s elliptic integral of the second kind, Rp(x, y, 2) . .. .. ELRD 264
Evaluates Carlson’s elliptic integral of the third kind, Ry(x, y, 2)......... ELR] 266
Evaluates a special case of Carlson’s elliptic integral, Rc{x, y, 2) ....... ELRC 268
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Usage Notes

The notation used in this chapter follows that of Abramowitz and Stegun (1964) and Carlson (1979).

The complete elliptic integral of the first kind is

/2 _
K(m) =_[: (1-msin®0) do

and the complete elliptic integral of the second kind is

/2 12
E(m) =_[ (1-msin®0) "o
0
Instead of the parameter m, the modular angle & is sometimes used with m = sin® «. Also used is the modulus k

with k2 = m.

/2 12
E(k) = IO (1-#sin’0) do

= Rp(0,1 - 1%1) - 2Ry (0,1 - 1)

Carlson Elliptic Integrals

The Carlson elliptic integrals are defined by Carlson (1979) as follows:
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RF(X y,z> J.O[(t+x)<t+y)(t+z>]l/2

00

°[(f+x)(f+y> ]

Re(x ) =1

1/2

00

RJ(x V, Z, p) I

]1/2

O[<t+x><t+y><t+z><t+p)2

Rp(x, y,z) = I d 72

°[(z+x)(z+}g(t+z)]

The standard Legendre elliptic integrals can be written in terms of the Carlson functions as follows (these rela-

tions are from Carlson (1979)):

F(4.k) = (1 - Psin’0) “ag
= (sing)Rp(cos’p, 1~ Ksin’, 1)

E(p.k) =[8(1 - Ksin0) " do

= (sing)Rp(cos?g, 1 — Ksin’g, 1) — Lk¥(sing )’ Rp(cos?g, 1 — Ksin’4, 1)

(¢ kon) =J(1+nsin20) '(1-sin0) “do

= (sin ) Rp(cos’, 1 - Ksin’p, 1) —2(sin ¢ )°R, (cos?¢, 1 -~ Ksin’, 1, 1+ n sin’p)

D(p.k) = Fsin?o(1 - Psin20) " do
= 3(51n¢)3RD<cosz¢, 1 - k*sin® 4, 1)
K(k) = [72(1 - K*sin20) a0
= re(0, 1-4#% 1)
E(k) = [?(1 - #sin20) " do
= R(0,1-#,1) = 2Rp(0,1 - K2, 1)

The function Rlx, y) is related to inverse trigonometric and inverse hyperbolic functions.
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In x= (x—l)Rc[<1;x>,x] 0<x< o

sin 'y = xR, (1 - x%1) ~1<x<l
sinh~'x = xR, (1 + %%, 1) —w < x< o
cos_leWRc<x2,l> 0<x<1
cosh Ly = V2 — 1 R,(:%,1) 1<x< o
tan_1x=ch<l,1 +x2> —o <x< o
tanh x = xR, (1,1 - x?) ~l<x<1

cot 'x =R (%, 2+ 1) 0<x< w
coth 'x =R, (5%, %% - 1) l<x<
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ELK

This function evaluates the complete elliptic integral of the kind K¢x).

Function Return Value

ELK — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
X must be greater than or equal to 0 and less than 1.

FORTRAN 90 Interface

Generic: ELK (X)
Specific: The specific interface names are S_ELK and D_ELK.

FORTRAN 77 Interface

Single: ELK (X)
Double: The double precision name is DELK.
Description

The complete elliptic integral of the first kind is defined to be

for 0<x<1

K@ [

The argument x must satisfy 0 < x < 1; otherwise, ELK is set to b = AMACH2), the largest representable float-
ing-point number.

The function K(x) is computed using the routine ELRF and the relation K(x) = R0, 1 - x, 1).
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3.0 M —
] / E(x)

2.5+

2.0 | /

Figure 17, Plot of K(x) and E(x)

Example
In this example, K(0) is computed and printed.

USE ELK_|I NT
USE UMACH | NT

IMPLICIT NONE
! Decl are vari abl es
| NTEGER NOUT
REAL VALUE, X
! Conmput e
X =0.0
VALUE = ELK( X)
! Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' ELK(', F6.3, ') ="', F6.3)
END

Output

ELK( 0.000) = 1.571
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ELE

This function evaluates the complete elliptic integral of the second kind £(x).

Function Return Value

ELE — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
X'must be greater than or equal to 0 and less than or equal to 1.

FORTRAN 90 Interface

Generic: ELE (X)
Specific: The specific interface names are S_ELEand D_ELE.

FORTRAN 77 Interface

Single: ELE (X)
Double: The double precision name is DELE.
Description

The complete elliptic integral of the second kind is defined to be

/2 1/2
E(x) =Jz [1-xsin?0] 46 foro<x<1

The argument x must satisfy 0 < x < 1; otherwise, ELE is set to b = AMACH(2), the largest representable float-
ing-point number.

The function E(x) is computed using the routines ELRF and ELRD. The computation is done using the relation

E(x) =Rp(0,1-x,1) = FRp (0,1 -x,1)

For a plot of £(x), see Figure 17, “Plot of K(x) and E(x).”
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Example

In this example, £(0.33) is computed and printed.

99999

USE ELE_| NT
USE UMACH I NT

IMPLICI T NONE
Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

Conput e
X = 0.33
VALUE = ELE(X)

Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
FORVAT (' ELE(', F6.3, ') ="', F6.3)
END

Output

ELE( 0.330) = 1.432
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ELRF

This function evaluates Carlson’s incomplete elliptic integral of the first kind RX Y, Z).

Function Return Value

ELRF — Function value. (Output)

Required Arguments

X — First variable of the incomplete elliptic integral. (Input)
It must be nonnegative

Y — Second variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

Z — Third variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

FORTRAN 90 Interface

Generic: ELRF (XY, 2)
Specific: The specific interface names are S_ELRF and D_ELRF.

FORTRAN 77 Interface

Single: ELRF (X Y, 2)
Double: The double precision name is DELRF.
Description

The Carlson’s complete elliptic integral of the first kind is defined to be
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00

1 dt
RF(X, y,z) 2.[0[ <t+x>(t+y>(t+z)]1/2

The arguments must be nonnegative and less than or equal to b/5. In addition, x + y, x + z, and y + z must be
greater than or equal to 5s. Should any of these conditions fail, ELRF is set to b. Here, b = AMACH2) is the largest
and s = AMACH(1) is the smallest representable floating-point number.

The function ELRF is based on the code by Carlson and Notis (1981) and the work of Carlson (1979).

Example

In this example, RHO, 1, 2) is computed and printed.

USE ELRF_I NT
USE UMACH | NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X, Y, Z
! Conmput e
X = 0.0
Y =1.0
4 =20
VALUE = ELRF(X, Y, 2)

! Print the results
CALL UMACH (2, NQOUT)
WRI TE (NQUT, 99999) X, Y, Z, VALUE

99999 FORMAT (' ELRF(', F6.3, ',', F6.3, ',', F6.3, ') ="', F6.3)
END

Output

ELRF( 0.000, 1.000, 2.000) = 1.311
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ELRD

This function evaluates Carlson’s incomplete elliptic integral of the second kind Rp(X, Y, Z).

Function Return Value

ELRD — Function value. (Output)

Required Arguments

X — First variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

Y — Second variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

Z — Third variable of the incomplete elliptic integral. (Input)
It must be positive.

FORTRAN 90 Interface

Generic: ELRD(X Y, 2)
Spedcific: The specific interface names are S_ELRDand D_ELRD.

FORTRAN 77 Interface

Single: ELRD(X Y, Z)
Double: The double precision name is DELRD.
Description

The Carlson’'s complete elliptic integral of the second kind is defined to be
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00

Rp(x, v, z) :%J. dr 72

0[(t+x)(t+y)(t+z)3]

The arguments must be nonnegative and less than or equal to 0.69(-In €)'/? s72/3 where £ = AMACH(4) is the
machine precision, s = AMACH(1) is the smallest representable positive number. Furthermore, x + y and z must be

greater than max{3s%/3, 3/b%/3}, where b = AMACH(2) is the largest floating-point number. If any of these condi-
tions are false, then ELRD s set to b.

The function ELRD s based on the code by Carlson and Notis (1981) and the work of Carlson (1979).

Example

In this example, Rp(0, 2, 1) is computed and printed.

USE ELRD_I NT
USE UMACH | NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X, Y, Z
! Conmput e
X =0.0
Y =20
4 =1.0
VALUE = ELRD( X, Y, 2)

! Print the results
CALL UMACH (2, NOUT)
VRI TE (NOUT, 99999) X, Y, Z, VALUE

99999 FORMAT (' ELRD(', F6.3, ',', F6.3, ',', F6.3, ') ="', F6.3)
END

Output

ELRD( 0.000, 2.000, 1.000) = 1.797
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ELR]

This function evaluates Carlson’s incomplete elliptic integral of the third kind R4X Y, Z, RHO

Function Return Value

ELRJ — Function value. (Output)

Required Arguments

X — First variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

Y — Second variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

Z — Third variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

RHO — Fourth variable of the incomplete elliptic integral. (Input)
It must be positive.

FORTRAN 90 Interface

Generic: ELRI (XY, Z RHO
Specific: The specific interface names are S_ELRJ and D_ELRJ.

FORTRAN 77 Interface

Single: ELRI (X Y, Z RHO
Double: The double precision name is DELRJ.
Description

The Carlson’s complete elliptic integral of the third kind is defined to be
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00

R;(x, 3,2 p) =%J. 72

dt
o[ (ex) (1+0) (14 2) (14 )]
The arguments must be nonnegative. In addition, x + y, x + z, y + zand p must be greater than or equal to (5s)”3
and less than or equal to .3(b/5)1/3, where s = AMACH(1) is the smallest representable floating-point number.

Should any of these conditions fail, ELRJ is set to b = AMACH(2), the largest floating-point number.

The function ELRJ is based on the code by Carlson and Notis (1981) and the work of Carlson (1979).

Example

In this example, Ry(2, 3, 4, 5) is computed and printed.

USE ELRJ_I NT
USE UMACH | NT

IMPLICIT NONE
! Decl are vari abl es
| NTEGER NOUT

REAL RHO, VALUE, X, Y, Z
! Conput e
X =20
Y =3.0
4 =4.0
RHO =5.0
VALUE = ELRI(X, Y, Z, RHO

! Print the results
CALL UMACH (2, NOUT)
WRI TE (NQUT, 99999) X, Y, Z, RHO VALUE
99999 FORMWAT (' ELRJ(', F6.3, ',', F6.3, ',', F6.3, ',', F6.3, &
'y ="', F6.3)
END

Output

ELRJ( 2.000, 3.000, 4.000, 5.000) = 0.143
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ELRC

This function evaluates an elementary integral from which inverse circular functions, logarithms and inverse
hyperbolic functions can be computed.

Function Return Value

ELRC — Function value. (Output)

Required Arguments

X — First variable of the incomplete elliptic integral. (Input)
It must be nonnegative and satisfy the conditions given in Comments.

Y — Second variable of the incomplete elliptic integral. (Input)
It must be positive and satisfy the conditions given in Comments.

FORTRAN 90 Interface

Generic: ELRC(X Y)
Specific: The specific interface names are S_ELRCand D_ELRC.

FORTRAN 77 Interface

Single: ELRC(X Y)
Double: The double precision name is DELRC.
Description

The special case of Carlson’s complete elliptic integral of the first kind is defined to be

00

dt
"l (r+x)(+yY]
The argument x must be nonnegative, y must be positive, and x + y must be less than or equal to b/5 and greater

than or equal to 5s. If any of these conditions are false, then ELRC s set to b. Here, b = AMACH(2) is the largest
and s = AMACH(1) is the smallest representable floating-point number.

1/2

RC<x, y) = %I
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The function ELRC s based on the code by Carlson and Notis (1981) and the work of Carlson (1979).

Comments

The sum X+ Y must be greater than or equal to ARGM Nand both Xand Y must be less than or equal to
ARGVAX. ARGM N=s* 5and ARGVAX = b/5, where s is the machine minimum (AMACH(1)) and b is the machine
maximum (AMACH2)).

Example

In this example, R(2.25, 2.0) is computed and printed.

USE ELRC | NT
USE UMACH | NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X, Y
! Conmput e
X =0.0
Y =10
VALUE = ELRC(X, YY)

! Print the results
CALL UMACH (2, NOUT)
VWRI TE (NOUT, 99999) X, Y, VALUE

99999 FORMAT (' ELRC(', F6.3, ',', F6.3, ') ="', F6.3)
END

Output

ELRC( 0.000, 1.000) = 1.571
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Elliptic and Related Functions

Routines

10.1 Weierstrass Elliptic and Related Functions

Lemninscaticcase ..ot e e e e CWPL
Lemninscaticcasederivative. .. ...... ... i i e CWPLD
Equianharmoniccase ...........ci i e CWPQ
Equianharmoniccasederivative. .. .............. ... ... .. .... CWPQD

10.2 Jacobi Elliptic Functions

Jacobi function sn(x, m) (realargument)........................... EJSN
Jacobi function cn(x, m) (realargument). . ......................... EJCN
Jacobi function dn(x, m) (realargument) .......................... EJDN
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Usage Notes

Elliptic functions are doubly periodic, single-valued complex functions of a single variable that are analytic, except
at a finite number of poles. Because of the periodicity, we need consider only the fundamental period parallelo-
gram. The irreducible number of poles, counting multiplicities, is the order of the elliptic function. The simplest,
non-trivial, elliptic functions are of order two.

The Weierstrass elliptic functions, g(z, w, w’) have a double pole at z=0 and so are of order two. Here, 2 w and

2 w’ are the periods.

The Jacobi elliptic functions each have two simple poles and so are also of order two. The period of the functions

is as follows:
Function Periods
sn(x, m) 4K(m) 2iK'(m)
cn(x, m) 4K(m) 4iK'(m)
dn(x, m) 2K(m) 4iK'(m)

The function K(m) is the complete elliptic integral, see ELK, and K’(m) = K(1 - m).
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CWPL

This function evaluates the Weierstrass' g function in the lemniscatic case for complex argument with unit period
parallelogram.

Function Return Value

CWPL — Complex function value. (Output)

Required Arguments

Z — Complex argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: CWPL (2)
Specific: The specific interface names are C_CWPL and Z_CWPL.

FORTRAN 77 Interface

Complex: CWPL (2)
Double complex: The double complex name is ZWPL.

Description

The Weierstrass' g function, £(2) = o(z | w, w’), is an elliptic function of order two with periods 2 w and 2 w’ and
a double pole at z= 0. CWPL(Z) computes £(z | w, w)with2 w=1and 2 w’ = 1.

The input argument is first reduced to the fundamental parallelogram of all z satisfying -1/2 < Rz < 1/2 and -1/2
< 8z < 1/2. Then, a rational approximation is used.

All arguments are valid with the exception of the lattice points z = m + ni, which are the poles of CWPL. If the argu-
ment is a lattice point, then b = AMACH2), the largest floating-point number, is returned. If the argument has

modulus greater than 10e~", then NaN (not a number) is returned. Here, € = AMACH(4) is the machine precision.

Function CWPL is based on code by Eckhardt (1980). Also, see Eckhardt (1977).
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Example

In this example, £(0.25 + 0.25/) is computed and printed.

99999

USE CWPL_I NT
USE UMACH | NT

IMPLICIT  NONE

| NTEGER NOUT
COVPLEX VALUE, Z

Decl are vari abl es

Conput e
4 (0.25, 0.25)
VALUE = CWPL(2)

CALL UMACH (2, NOUT)

WRI TE (NOUT, 99999) Z, VALUE

FORMAT (' OWPL(', F6.3, ',', F6.3, ') = (', &
F6.3, ',', F6.3, ')")

Print the results

END

Output

CWPL(

0.250, 0.250) = ( 0.000, - 6. 875)
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CWPLD

This function evaluates the first derivative of the Weierstrass' § function in the lemniscatic case for complex argu-
ment with unit period parallelogram.

Function Return Value

CWPLD — Complex function value. (Output)

Required Arguments

Z — Complex argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: CWPLD(2)
Specific: The specific interface names are C_CWPLDand Z_CWPLD.

FORTRAN 77 Interface
Complex: CWPLD (2)

Double complex: The double complex name is ZWPLD.

Description

The Weierstrass' g function, (z) = p(z | w, w’), is an elliptic function of order two with periods 2w and 2w’ and a
double pole at z = 0. CWPLDX(Z) computes the derivative of (7 | w, w’)with 2 w =1 and 2 w’ = /. CWPL computes
Pz 1w, w).

The input argument is first reduced to the fundamental parallelogram of all z satisfying -1/2 < Rz < 1/2 and -
1/2 < 3z < 1/2. Then, a rational approximation is used.

All arguments are valid with the exception of the lattice points z = m + ni, which are the poles of CWPL. If the argu-
ment is a lattice point, then b = AMACH(2), the largest floating-point number, is returned.

Function CWPLD is based on code by Eckhardt (1980). Also, see Eckhardt (1977).
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Example
In this example, £(0.25 + 0.25/) is computed and printed.

USE CWPLD | NT
USE UMACH_| NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT
COVPLEX VALUE, Z
! Conput e
Z (0.25, 0.25)
VALUE = CWPLDX Z)
! Print the results
CALL UMACH (2, NaouTt)
WRI TE (NOUT, 99999) Z, VALUE
99999 FORMAT (' CWPLD(', F6.3, ',', F6.3, ') = (', &
F6.3, ',', F6.3, ')")

END

Output

CWPLD( 0.250, 0.250) = (36.054, 36. 054)
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CWPQ

This function evaluates the Weierstrass' g function in the equianharmonic case for complex argument with unit
period parallelogram.

Function Return Value

CWPQ — Complex function value. (Output)

Required Arguments

Z — Complex argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: CWPQ(2)
Specific: The specific interface names are C_CWPQand Z_CWPQ

FORTRAN 77 Interface
Complex: CWPQ (2)

Double complex: The double complex name is ZWPQ

Description

The Weierstrass' g function, £(2) = $(z | w, w’), is an elliptic function of order two with periods 2 w and 2 w’ and
a double pole at z= 0. CWPQZ) computes (z | w, w’) with

4o=1-i3 and 4w'=1+H3

The input argument is first reduced to the fundamental parallelogram of all z satisfying

~1/2< Rz<1/2 and —V3/4< Tz<V3/4
Then, a rational approximation is used.

All arguments are valid with the exception of the lattice points
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Z=m<1—i\/§> +n<1+i\/§>
which are the poles of QWPQ If the argument is a lattice point, then b = AMACH(2), the largest floating-point num-

ber, is returned. If the argument has modulus greater than 10¢~", then NaN (not a number) is returned. Here,
€ = AMACH(4) is the machine precision.

Function CWPQis based on code by Eckhardt (1980). Also, see Eckhardt (1977).

Example
In this example, §(0.25 + 0.14437567i) is computed and printed.

USE CWPQ | NT
USE UMACH | NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT
COVPLEX VALUE, Z
1 Conmput e
z = (0.25, 0.14437567)
VALUE = CWPQ( Z)
! Print the results
CALL UMACH (2, NOUT)
VR TE (NOUT, 99999) Z, VALUE
99999 FORMAT (' CWPQ ', F6.3, ',', F6.3, ') = (', &
F7.3, ',', F7.3, ')")
END

Output

CWPQ( 0.250, 0.144) = ( 5.895, - 10. 216)
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CWPQD

This function evaluates the first derivative of the Weierstrass' § function in the equianharmonic case for complex
argument with unit period parallelogram.

Function Return Value

CWPQD — Complex function value. (Output)

Required Arguments

Z — Complex argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: CWPQD (2)
Specific: The specific interface names are C_CWPQD and Z_ CWPQD.

FORTRAN 77 Interface
Complex: CWPQD ( Z)

Double complex: The double complex name is ZWPQD.

Description

The Weierstrass' g function, £(2) = $(z | w, w’), is an elliptic function of order two with periods 2 w and 2 w’ and
a double pole at z= 0. CWPQD(Z) computes the derivative of p(z | w, w’) with

4o=1-3 and 40'=1+iV3
CWPQ computes (7 | w, w').

The input argument is first reduced to the fundamental parallelogram of all z satisfying

~1/2< Rz<1/2 and -V3/4< 8z<+3/4

Then, a rational approximation is used.
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All arguments are valid with the exception of the lattice points

Z=m<1—i\/§>+n<l+i\/§>

which are the poles of CWPQ If the argument is a lattice point, then b = AMACH(2), the largest floating-point num-
ber, is returned.

Function CWP(D is based on code by Eckhardt (1980). Also, see Eckhardt (1977).

Example
In this example, §(0.25 + 0.14437567i) is computed and printed.

USE CWPQD_| NT
USE UMACH_ | NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER NOUT
COVPLEX VALUE, Z
! Conmput e
z (0.25, 0.14437567)
VALUE = CWPQ( 2)
! Print the results
CALL UMACH (2, NOUT)
VR TE (NOUT, 99999) Z, VALUE
99999 FORMAT (' CWPQD(', F6.3, ',', F6.3, ') = (', &
F6.3, ',', F6.3, ')")
END

Output

CWPQD( 0.250, 0.144) = ( 0.028, 85.934)
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EJSN

This function evaluates the Jacobi elliptic function sn(x, m).

Function Return Value

EJSN — Real or complex function value. (Output)

Required Arguments
X — Real or complex argument for which the function value is desired. (Input)

AM — Parameter of the elliptic function (m = k2. (Input)

FORTRAN 90 Interface

Generic: EJSN (X, AM
Specific: The specific interface names are S_ EJSN D_EJSN C_EJSN and Z_EJSN

FORTRAN 77 Interface

Single: EJSN (X AM
Double: The double precision name is DEJSN

Complex:The complex name is CEJ SN

Double Complex:  The double complex name is ZEJSN

Description

The Jacobi elliptic function sn(x, m) = sin ¢, where the amplitude ¢ is defined by the following:

x:.r’ do
O(l —m sin26?>1/2

The function sn(x, m) is computed by first applying, if necessary, a Jacobi transformation so that the parameter, m,
is between zero and one. Then, a descending Landen (Gauss) transform is applied until the parameter is small.
The small parameter approximation is then applied.

280



Elliptic and Related Functions EJSN

Comments

Informational errors

Type Code Description

3 2 The result is accurate to less than one half precision because |X| is too
large.

3 2 The result is accurate to less than one half precision because |REAL (Z)|
is too large.

3 3 The result is accurate to less than one half precision because |Al MAG(Z)]
is too large.

3 5 Landen transform did not converge. Result may not be accurate. This

should never occur.

Examples

Example 1

In this example, sn(1.5, 0.5) is computed and printed.

99999

Output

EJISN(

USE EJSN_I NT
USE UMACH | NT

IMPLICI T NONE
Decl are vari abl es
| NTEGER NOUT

REAL AM VALUE, X
Conput e
AM = 0.5
X = 1.5
VALUE = EJSN( X, AM

Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, AM VALUE

FORMAT (' EJSN(', F6.3, ',', F6.3, ') = ', F6.3)
END
1.500, 0.500) = 0.968

Example 2

In this example, sn(1.5 + 0.3/, 0.5) is computed and printed.

USE EJSN_I NT
USE UMACH | NT

IMPLICI T NONE

Decl are vari abl es
| NTEGER NOUT
REAL AM
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COWPLEX VALUE, Z

! Conmput e
4 = (1.5 0.3)
AM = 0.5
VALUE = EIJSN(Z, AM

! Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) Z, AM VALUE
99999 FORMAT (' EBJIJSN((', F6.3, ',', F6.3, '), ', F6.3,
F6.3, ',', F6.3, ')")
END

Output

EJSN(( 1.500, 0.300), 0.500) = ( 0.993, 0.054)
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EJCN

This function evaluates the Jacobi elliptic function cn(x, m).

Function Return Value

EJCN — Real or complex function value. (Output)

Required Arguments
X — Real or complex argument for which the function value is desired. (Input)

AM — Parameter of the elliptic function (m = k2. (Input)

FORTRAN 90 Interface

Generic: EJCN (X AM
Specific: The specific interface names are S_EJCN D_EJCN C_EJCN and Z_EJCN

FORTRAN 77 Interface

Single: EJCN (X AM
Double: The double precision name is DEJCN

Complex:The complex name is CEJCN.

Double Complex: The double complex name is ZEJCN.

Description
The Jacobi elliptic function cn(x, m) = cos ¢, where the amplitude ¢ is defined by the following:
. j e
12
0( l1—m sin20>

The function cn(x, m) is computed by first applying, if necessary, a Jacobi transformation so that the parameter, m,
is between zero and one. Then, a descending Landen (Gauss) transform is applied until the parameter is small.
The small parameter approximation is then applied.
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Comments

Informational errors

Type Code Description

3 2 The result is accurate to less than one half precision because |X| is too
large.

3 2 The result is accurate to less than one half precision because |REAL (Z)|
is too large.

3 3 The result is accurate to less than one half precision because |Al MAG(Z)]
is too large.

3 5 Landen transform did not converge. Result may not be accurate. This

should never occur.

Examples

Example 1

In this example, cn(1.5, 0.5) is computed and printed.

99999

Output

EJON(

USE EJCN_ I NT
USE UMACH_| NT

IMPLICI T NONE
Decl are vari abl es
| NTEGER NOUT

REAL AM VALUE, X
Conput e
AM = 0.5
X = 1.5
VALUE = EJCN( X,

AM) .
Print the results
CALL UMACH (2, NOUT)
VWRI TE (NOUT, 99999) X, AM VALUE

FORMAT (' EJCN(', F6.3, ',', F6.3, ') = ', F6.3)
END
1.500, 0.500) = 0.250

Example 2

In this example, cn(1.5 + 0.3/, 0.5) is computed and printed.

USE EJCN_I NT
USE UMACH_| NT

IMPLICI T NONE

Decl are vari abl es
| NTEGER NOUT
REAL AM
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COWPLEX VALUE, Z

! Conmput e
4 = (1.5 0.3)
AM = 0.5
VALUE = BEJCN(Z, AM

! Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) Z, AM VALUE
99999 FORMAT (' EBJCON((', F6.3, ',', F6.3, '), ', F6.3,
F6.3, ',', F6.3, ')")
END

Output

EJON(( 1.500, 0.300), 0.500) = ( 0.251,-0.212)
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EJDN

This function evaluates the Jacobi elliptic function dn(x, m).

Function Return Value

EJDN — Real or complex function value. (Output)

Required Arguments
X — Real or complex argument for which the function value is desired. (Input)

AM — Parameter of the elliptic function (m = k2. (Input)

FORTRAN 90 Interface

Generic: EJDN (X, AM
Specific: The specific interface names are S_EJDN D_EJDN C_EJDN and Z_EJDN

FORTRAN 77 Interface

Single: EJDN (X, AM
Double: The double precision name is DEJDN

Complex:The complex precision name is CEJDN

Double Complex: The double complex precision name is ZEJDN.

Description
The Jacobi elliptic function dn(x, m) = (1 - m sin? &)”?, where the amplitude ¢ is defined by the following;
L J ’ do
172
O< 1—m sin20>

The function dn(x, m) is computed by first applying, if necessary, a Jacobi transformation so that the parameter, m,
is between zero and one. Then, a descending Landen (Gauss) transform is applied until the parameter is small.
The small parameter approximation is then applied.
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Comments

Informational errors

Type Code Description

3 2 The result is accurate to less than one half precision because |X| is too
large.

3 2 The result is accurate to less than one half precision because |REAL (Z)|
is too large.

3 3 The result is accurate to less than one half precision because |Al MAG(Z)]
is too large.

3 5 Landen transform did not converge. Result may not be accurate. This

should never occur.

Examples

Example 1

In this example, dn(1.5, 0.5) is computed and printed.

99999

Output

EJDN(

USE EJDN_ I NT
USE UMACH | NT

IMPLICI T NONE
Decl are vari abl es
| NTEGER NOUT

REAL AM VALUE, X
Conput e
AM = 0.5
X = 1.5
VALUE = EIDN( X, AM

Print the results
CALL UMACH (2, NOUT)
VWRI TE (NOUT, 99999) X, AM VALUE

FORMAT (' EJDN(', F6.3, ',', F6.3, ') = ', F6.3)
END
1.500, 0.500) = 0.729

Example 2

In this example, dn(1.5 + 0.3/, 0.5) is computed and printed.

USE EJDN_I NT
USE UMACH | NT

IMPLICI T NONE

Decl are vari abl es
| NTEGER NOUT
REAL AM

287



Elliptic and Related Functions EJDN

COWPLEX VALUE, Z

! Conmput e
4 = (1.5 0.3)
AM = 0.5
VALUE = EIJDN(Z, AM

! Print the results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) Z, AM VALUE
99999 FORMAT (' EJDN((', F6.3, ',', F6.3, '), ', F6.3,
F6.3, ',', F6.3, ')")
END

Output

EJDN(( 1.500, 0.300), 0.500) = ( 0.714,-0.037)
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Probability Distribution Functions

and Inverses

Routines

11.1 Discrete Random Variables: Cumulative Distribution Functions and Probability Density Function

Binomial cumulative distributionfunction........................ BINDF 296
Binomial probability density function ............. ... ... ... ..., BINPR 298
Geometric cumulative distributionfunction ..................... GEODF 301
Inverse of Geometric cumulative distribution function. .. .......... GEOIN 303
Geometric probability density function. ........................ GEOPR 305
Hypergeometric cumulative distribution function ................ HYPDF 307
Hypergeometric probability density function.................... HYPPR 310
Poisson cumulative distribution function......................... POIDF 313
Poisson probability density function . ........................... POIPR 315
Discrete uniform cumulative distribution function ................ UNDDF 318
Inverse of discrete uniform cumulative distribution function........ UNDIN 320
Discrete uniform probability density function.................... UNDPR 322

11.2 Continuous Random Variables: Distribution Functions and Their Inverses
Kolmogorov-Smirnov one-sided statistic cumulative distribution functionAKST1DF 324
Kolmogorov-Smirnov two-sided statistic cumulative distribution functionAKS2DF 327

Lognormal cumulative distribution function ..................... ALNDF 330
Inverse of the lognormal cumulative distribution function........... ALNIN 332
Lognormal probability density function. . ....................... ALNPR 334
Normal (Gaussian) cumulative distribution function. . ............ ANORDF 336
Inverse of the normal cumulative distribution function ........... ANORIN 339
Normal (Gaussian) probability density function . ................ ANORPR 341
Beta cumulative distributionfunction ............. ... ... .. ... BETDF 343
Inverse of the beta cumulative distribution function. . .............. BETIN 346
Beta probability density function .. ..... ... ... . oo ool BETPR 348
Noncentral beta cumulative distribution function ............... BETNDF 350
Inverse of the noncentral beta cumulative distribution function . . . .. BETNIN 353
Noncentral beta probability density function................... BETNPR 356
Bivariate normal cumulative distribution function ................ BNRDF 359
Chi-squared cumulative distribution function..................... CHIDF 361
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Inverse of the chi-squared cumulative distribution function ......... CHIN 364
Chi-squared probability density function ........................ CHIPR 366
Noncentral chi-squared cumulative distribution function .......... CSNDF 368
Inverse of the noncentral chi-squared cumulative distribution function CSNIN 371
Noncentral chi-squared probability density function.............. CSNPR 373
Exponential distribution cumulative function ..................... EXPDF 376
Inverse of the exponential cumulative distribution function ......... EXPIN 378
Exponential probability density function......................... EXPPR 380
Extreme value cumulative distribution function ................... EXVDF 382
Inverse of the Extreme value cumulative distribution function ....... EXVIN 384
Extreme value probability density function....................... EXVPR 386
F cumulative distributionfunction ............. ... ... ... ... L. FDF 388
Inverse of the F cumulative distribution function. .................... FIN 391
F probability density function. . .......... ... ... ... .o L. FPR 393
Noncentral Fcumulative distribution function ..................... FNDF 395
Inverse of the noncentral F cumulative distribution function . ......... FNIN 398
Noncentral F probability density function . . ....................... FNPR 401
Gamma cumulative distribution function. . ........... ... ... ... GAMDF 404
Inverse of the gamma cumulative distribution function .. .......... GAMIN 407
Gamma probability density function . ............... ... ... ..., GAMPR 409
Rayleigh’s cumulative distribution function ...................... RALDF 411
Inverse of the Rayleigh’s cumulative distribution function........... RALIN 413
Rayleigh’s probability density function .. ........................ RALPR 415
Student’s t cumulative distribution function .. ............. ... . ..., TDF 417
Inverse of the Student’s t cumulative distribution function ............ TIN 420
Student’s t probability density function. . .......................... TPR 422
Noncentral Student’s t cumulative distribution function ............. TNDF 424
Inverse of the noncentral Student’s t cumulative distribution function.. TNIN 427
Noncentral Student's t probability density function................. TNPR 429
Uniform cumulative distribution function ........................ UNDF 431
Inverse of the uniform cumulative distribution function.............. UNIN 433
Uniform probability density function............................ UNPR 435
Weibull cumulative distribution function. . ...................... WBLDF 437
Inverse of the Weibull cumulative distribution function............ WBLIN 439
Weibull probability density function ........................... WBLPR 441
11.3 General Continuous Random Variables
Distribution function given ordinates ofdensity . . .. ............... GCDF 443
Inverse of distribution function given ordinates ofdensity ........... GCIN 447
Inverse of distribution function given subprogram................. GFNIN 457
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Usage Notes

Definitions and discussions of the terms basic to this chapter can be found in Johnson and Kotz (1969, 19703,
1970b). These are also good references for the specific distributions.

In order to keep the calling sequences simple, whenever possible, the routines in this chapter are written for
standard forms of statistical distributions. Hence, the number of parameters for any given distribution may be
fewer than the number often associated with the distribution. For example, while a gamma distribution is often
characterized by two parameters (or even a third, “location”), there is only one parameter that is necessary, the
“shape.” The “scale” parameter can be used to scale the variable to the standard gamma distribution. For another
example, the functions relating to the normal distribution, ANORDF and ANORI N, are for a normal distribution
with mean equal to zero and variance equal to one. For other means and variances, it is very easy for the user to
standardize the variables by subtracting the mean and dividing by the square root of the variance.

The distribution function for the (real, single-valued) random variable X is the function £ defined for all real x by

F(x) = Prob(X < Xx)
where Prob(-) denotes the probability of an event. The distribution function is often called the cumulative distribu-

tion function (CDF).

For distributions with finite ranges, such as the beta distribution, the CDF is O for values less than the left end-
point and 1 for values greater than the right endpoint. The routines in this chapter return the correct values for
the distribution functions when values outside of the range of the random variable are input, but warning error
conditions are set in these cases.

Discrete Random Variables

For discrete distributions, the function giving the probability that the random variable takes on specific values is
called the probability function, defined by

p(x) = Prob(X = X)

The “PR’ routines in this chapter evaluate probability functions.

The CDF for a discrete random variable is
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HOBYIO
\rrye

where Ais the set such that k < x. The "DF" routines in this chapter evaluate cumulative distribution functions.
Since the distribution function is a step function, its inverse does not exist uniquely.

1.00 — —

Probability
=]
n
=
1

PR

0.00 : | l

Figure 18, Discrete Random Variable

In the plot above, a routine like Bl NPR in this chapter evaluates the individual probability, given X. A routine like
Bl NDF would evaluate the sum of the probabilities up to and including the probability at X.

Continuous Distributions

For continuous distributions, a probability function, as defined above, would not be useful because the probabil-
ity of any given point is 0. For such distributions, the useful analog is the probability density function (PDF). The
integral of the PDF is the probability over the interval; if the continuous random variable X has PDF f, then

b
Pr0b<a<X§b> =J-f<x>dx

The relationship between the CDF and the PDF is
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F(x) =r_oof(t)dt

as shown below.
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Probability Density
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|

0.0

Figure 19, Probability Density Function

The “DF" routines for continuous distributions in this chapter evaluate cumulative distribution functions, just as
the ones for discrete distributions.

For (absolutely) continuous distributions, the value of A(x) uniquely determines x within the support of the distri-
bution. The “I N’ routines in this chapter compute the inverses of the distribution functions; that is, given F(x)
(called "P" for “probability”), a routine like BETI N computes x. The inverses are defined only over the open interval
0, 1).
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Figure 20, Cumulative Probability Distribution Function

There are two routines in this chapter that deal with general continuous distribution functions. The routine GCDF
computes a distribution function using values of the density function, and the routine GCI N computes the
inverse. These two routines may be useful when the user has an estimate of a probability density.

Additional Comments

Whenever a probability close to 1.0 results from a call to a distribution function or is to be input to an inverse
function, it is often impossible to achieve good accuracy because of the nature of the representation of numeric
values. In this case, it may be better to work with the complementary distribution function (one minus the distri-
bution function). If the distribution is symmetric about some point (as the normal distribution, for example) or is
reflective about some point (as the beta distribution, for example), the complementary distribution function has a
simple relationship with the distribution function. For example, to evaluate the standard normal distribution at
4.0, using ANORI Ndirectly, the result to six places is 0.999968. Only two of those digits are really useful, however.
A more useful result may be 1.000000 minus this value, which can be obtained to six significant figures as
3.16713E-05 by evaluating ANORI N at -4.0. For the normal distribution, the two values are related by

®(x)=1- ®(-x), where ®(-) is the normal distribution function. Another example is the beta distribution with
parameters 2 and 10. This distribution is skewed to the right; so evaluating BETDF at 0.7, we obtain 0.999953. A
more precise result is obtained by evaluating BETDF with parameters 10 and 2 at 0.3. This yields 4.72392E-5. (In
both of these examples, it is wise not to trust the last digit.)
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Many of the algorithms used by routines in this chapter are discussed by Abramowitz and Stegun (1964). The
algorithms make use of various expansions and recursive relationships, and often use different methods in differ-

ent regions.

Cumulative distribution functions are defined for all real arguments; however, if the input to one of the distribu-
tion functions in this chapter is outside the range of the random variable, an error of Type 1 is issued, and the
output is set to zero or one, as appropriate. A Type 1 error is of lowest severity, a “note;” and, by default, no print-
ing or stopping of the program occurs. The other common errors that occur in the routines of this chapter are
Type 2, "alert,” for a function value being set to zero due to underflow; Type 3, “warning,” for considerable loss of
accuracy in the result returned; and Type 5, “terminal,” for incorrect and/ or inconsistent input, complete loss of
accuracy in the result returned, or inability to represent the result (because of overflow). When a Type 5 error
occurs, the result is set to NaN (not a number, also used as a missing value code, obtained by IMSL routine

AMACH(6). (See the section User Errors in the Reference Material.)
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BINDF

This function evaluates the binomial cumulative distribution function.

Function Return Value

BINDF — Function value, the probability that a binomial random variable takes a value less than or equal

to K (Output)
Bl NDF is the probability that K or fewer successes occur in Nindependent Bernoulli trials, each of

which has a Pl N probability of success.

Required Arguments
K — Argument for which the binomial distribution function is to be evaluated. (Input)
N — Number of Bernoulli trials. (Input)

PIN — Probability of success on each independent trial. (Input)

FORTRAN 90 Interface

Generic: Bl NDF (K. N PI' N)
Specific: The specific interface names are S_BI NDF and D_BI NDF.

FORTRAN 77 Interface

Single: Bl NDF (K, N PI'N)
Double: The double precision name is DBl NDF.
Description

Function Bl NDF evaluates the cumulative distribution function of a binomial random variable with parameters n
and p where n=Nand p =PI N It does this by summing probabilities of the random variable taking on the specific
values in its range. These probabilities are computed by the recursive relationship
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BINDF

Pr(X=j)=

(n+1—j)p

0P Pr(X=,-1)

To avoid the possibility of underflow, the probabilities are computed forward from O, if k is not greater than n
times p, and are computed backward from n, otherwise. The smallest positive machine number, g, is used as the

starting value for summing the probabilities, which are rescaled by (1 - p)*e if forward computation is performed

and by p"e if backward computation is done. For the special case of p = 0, Bl NDF is set to 1; and for the case
p=1,BI NDFissetto 1if k=nand to 0 otherwise.

Description
The input argument, K, is less than zero.

The input argument, K, is greater than the number of Bernoulli trials, N.

Comments
Informational errors
Type Code
1 3
1 4
Example

Suppose Xis a binomial random variable with n =5 and p = 0.95. In this example, we find the probability that Xis
less than or equal to 3.

99999

Output

The probability that X is |less than or equal

USE UMACH | NT
USE BI NDF_I NT

IMPLICIT  NONE
INTEGER K, N, NOUT
REAL PIN, PR
CALL UMACH (2, NOUT)
K =3
N =5
PIN = 0.95
PR = BI NDF(K, N, PIN)
VR TE (NOUT, 99999) PR
FORMAT ('

, F6.4)
END

The probability that X is |ess than or equal

to 3is ' &

to 3 is 0.0226
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BINPR

This function evaluates the binomial probability density function.

Function Return Value

BINPR Function value, the probability that a binomial random variable takes a value equal to K. (Output)

Required Arguments

K — Argument for which the binomial probability function is to be evaluated. (Input)

N — Number of Bernoulli trials. (Input)

PIN — Probability of success on each independent trial. (Input)

FORTRAN 90 Interface

Generic: Bl NPR(K, N PI N)
Specific: The specific interface names are S_BI NPRand D_BI NPR

FORTRAN 77 Interface

Single: BI NPR(K, N PI' N)
Double: The double precision name is DBl NPR
Description

The function Bl NPR evaluates the probability that a binomial random variable with parameters n and p where p
=PI Ntakes on the value k. It does this by computing probabilities of the random variable taking on the values in
its range less than (or the values greater than) k. These probabilities are computed by the recursive relationship
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(n +1 —j)p
Pr(X=j)=——7F7"7Pr(X=/—-1
(X =) =y (X == 1)
To avoid the possibility of underflow, the probabilities are computed forward from O, if k is not greater than n
times p, and are computed backward from n, otherwise. The smallest positive machine number, €, is used as the
starting value for computing the probabilities, which are rescaled by (1 - p)*¢ if forward computation is performed

and by p"e if backward computation is done.

For the special case of p = 0, Bl NPRis set to O if k is greater than 0 and to 1 otherwise; and for the case p =1,
Bl NPRis set to 0 if k is less than n and to 1 otherwise.

0327 n=10,p=0.5 —
n=10,p=02
0.24 —
20.16 -
=]
3 i
o 4
0.08 —
0.0 — | ——
o 2 4 6 8 10
k
Figure 21, Binomial Probability Function
Comments
Informational errors
Type Code Description
1 3 The input argument, K, is less than zero.
1 4 The input argument, K, is greater than the number of Bernoulli trials, N.
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Example

Suppose Xis a binomial random variable with N=5 and Pl N=0.95. In this example, we find the probability that X
is equal to 3.

USE UMACH | NT
USE BI NPR_| NT
IMPLICIT ~ NONE
INTEGER K, N, NOUT

REAL PIN, PR
!

CALL UMACH (2, NOUT)

K =3

N =5

PIN = 0.95

PR = BINPR(K, N, PI N)
VWRI TE ( NOUT, 99999) PR

99999 FORMVAT (' The probability that X is equal to 3 is ', F6.4)
END

Output

The probability that Xis equal to 3 is 0.0214
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GEODF

This function evaluates the discrete geometric cumulative probability distribution function.

Function Return Value

GEODF — Function value, the probability that a geometric random variable takes a value less than or
equal to | X (Output)

Required Arguments
IX — Argument for which the geometric cumulative distribution function is to be evaluated. (Input)

PIN — Probability parameter for each independent trial (the probability of success for each independent
trial). PI Nmust be in the open interval (0, 1). (Input)

FORTRAN 90 Interface

Generic: GECDF (I X, PI' N
Spedcific: The specific interface names are S_GECDF and D_GECQDF.

FORTRAN 77 Interface

Single: GEQDF (I X, PI N
Double: The double precision name is DGECDF.
Description

The function GECDF evaluates the discrete geometric cumulative probability distribution function with parameter
p =PI N defined

[x]
F(xlp)=2pq’, g=1-p, 0<p<l
i=0

The return value is the probability that up to x trials would be observed before observing a success.
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Example
In this example, we evaluate the probability function at | X=3, Pl N=0.25.

USE UMACH | NT
USE GECDF_| NT

I MPLI O T NONE

| NTEGER NOUT, X
REAL PIN, PR

CALL UMACH(2, NOUT)
IX =3

PIN = 0.25e0

PR = GEODF(I X, PIN)
WRI TE (NOUT, 99999) IX, PIN, PR

99999 FORMAT (' GEODF(', 12, ', ', F4.2, ') ="', F10.6)
END
Output
GEODF( 3, 0.25) = 0.683594
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GEOIN

This function evaluates the inverse of the geometric cumulative probability distribution function.

Function Return Value

GEOIN — Integer function value. The probability that a geometric random variable takes a value less than
or equal to the returned value is the input probability, P. (Output)

Required Arguments

P — Probability for which the inverse of the discrete geometric cumulative distribution function is to be
evaluated. P must be in the open interval (0, 1). (Input)

PIN — Probability parameter for each independent trial (the probability of success for each independent
trial). PI Nmust be in the open interval (0, 1). (Input)

FORTRAN 90 Interface

Generic: GEAQ N(P, PI N
Specific: The specific interface names are S_GEA Nand D_GEQA N

FORTRAN 77 Interface

Single: GEA N(P, PI'N)
Double: The double precision name is DGEQ N.
Description

The function GEOl N evaluates the inverse distribution function of a geometric random variable with parameter
Pl N. The inverse of the CDF is defined as the smallest integer x such that the geometric CDF is not less than a
givenvalue P, 0 <P <1,

Example

In this example, we evaluate the inverse probability function at Pl N=0.25, P = 0.6835.

303



Probability Distribution Functions and Inverses GEOIN

USE UMACH_| NT
USE GEO N_I NT

I MPLI CI T NONE

I NTEGER NOUT, X
REAL P, PIN

CALL UMACH(2, NOUT)
PIN = 0.25

P = 0.6835

IX = GEONP, PIN)
WRI TE (NOUT, 99999) P, PIN, IX

99999 FORMAT (' GEOIN(', F4.2, ', ', F6.4 ') ="', 12)
END

Output

GEO N(0.6835, 0.25) = 3
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GEOPR

This function evaluates the discrete geometric probability density function.

Function Return Value

GEOPR — Function value, the probability that a random variable from a geometric distribution having
parameter Pl Nwill be equal to | X (Output)

Required Arguments

IX — Argument for which the discrete geometric probability density function is to be evaluated. | X must
be greater than or equal to 0. (Input)

PIN — Probability parameter of the geometric probability function (the probability of success for each
independent trial). PI Nmust be in the open interval (0, 1). (Input)

FORTRAN 90 Interface

Generic: GECPR(I X, PI N)
Specific: The specific interface names are S_GEOPRand D_GEOPR

FORTRAN 77 Interface

Single: GECPR(I X, PI N
Double: The double precision name is DGEOPR
Description

The function GEOPR evaluates the discrete geometric probability density function, defined

f<x|p)=pqx, g=1-p, 0<p<l1, x=0,1,... HUGE(1), where p = PIN.

Example

In this example, we evaluate the probability density function at | X=3, Pl N=0.25.
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USE UMACH_| NT
USE GECPR_| NT

I MPLI CI T NONE

I NTEGER NOUT, X
REAL PIN, PR

CALL UMACH(2, NOUT)
IX =3

PIN = 0.25e0

PR = GEOPR(I X, PIN)
WRI TE (NOUT, 99999) IX, PIN, PR

99999 FORMAT (' GEOPR(', 12, ', '. F4.2, ') ="', F6.4)
END

Output

GEOPR( 3, 0.25) = 0.1055
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HYPDF

This function evaluates the hypergeometric cumulative distribution function.

Function Return Value

HYPDF — Function value, the probability that a hypergeometric random variable takes a value less than
or equal to K. (Output)
HYPDF is the probability that K or fewer defectives occur in a sample of size Ndrawn from a lot of
size L that contains Mdefectives.
See Comment 1.

Required Arguments

K — Argument for which the hypergeometric cumulative distribution function is to be evaluated. (Input)

N — Sample size. (Input)
N must be greater than zero and greater than or equal to K

M — Number of defectives in the lot. (Input)

L — Lot size. (Input)
L must be greater than or equal to Nand M

FORTRAN 90 Interface

Generic: HYPDF (K. N M L)
Specific: The specific interface names are S_HYPDF and D_HYPDF.

FORTRAN 77 Interface

Single: HYPDF (K. N M L)
Double: The double precision name is DHYPDF.
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Description

The function HYPDF evaluates the cumulative distribution function of a hypergeometric random variable with
parameters n, /, and m. The hypergeometric random variable X can be thought of as the number of items of a
given type in a random sample of size n that is drawn without replacement from a population of size / containing
m items of this type. The probability function is

()

n

for j=i,i+1,i+2, ... min(n,m)

where /= max(0, n-/+m).

If kis greater than or equal to / and less than or equal to min(n, m), HYPDF sums the terms in this expression for
J going from j up to k. Otherwise, HYPDF returns O or 1, as appropriate. So, as to avoid rounding in the accumula-
tion, HYPDF performs the summation differently depending on whether or not k is greater than the mode of the
distribution, which is the greatest integer less than or equal to (m + 1)(n + 1)/(/ + 2).

Comments

1. If the generic version of this function is used, the immediate result must be stored in a variable

before use in an expression. For example:

X = HYPDF (K, N, M L)

Y = SQRT(X)

must be used rather than

Y = SQRT(HYPDF(K, N, M L))
If this is too much of a restriction on the programmer, then the specific name can be used without
this restriction.

2. Informational errors

Type Code Description

1 5 The input argument, K, is less than zero.

1 6 The input argument, K, is greater than the sample size.
Example

Suppose Xis a hypergeometric random variable with N= 100, L = 1000, and M= 70. In this example, we evaluate
the distribution function at 7.
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USE UMACH | NT

USE HYPDF_I NT

IMPLICI T — NONE

INTEGER K, L, M N NOUT
DF

REAL
|
CALL UMACH (2, NOUT)
K =7
N = 100
L = 1000
M = 70
DF = HYPDF(K, N, M L)

VRl TE ( NOUT, 99999) DF
99999 FORMAT (' The probability that X is less than or equal to 7 is ' &
, F6.4)
END

Output

The probability that X is |less than or equal to 7 is 0.5995
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HYPPR

This function evaluates the hypergeometric probability density function.

Function Return Value

HYPPR — Function value, the probability that a hypergeometric random variable takes a value equal to K

(Output)
HYPPR is the probability that exactly K defectives occur in a sample of size Ndrawn from a lot of size

L that contains Mdefectives.
See Comment 1.

Required Arguments

K — Argument for which the hypergeometric probability function is to be evaluated. (Input)

N — Sample size. (Input)
N must be greater than zero and greater than or equal to K

M — Number of defectives in the lot. (Input)

L — Lot size. (Input)
L must be greater than or equal to Nand M

FORTRAN 90 Interface

Generic: HYPPR(K, N ML)
Specific: The specific interface names are S_HYPPRand D_HYPPR

FORTRAN 77 Interface

Single: HYPPR(K N ML)
Double: The double precision name is DHYPPR
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Description

The function HYPPR evaluates the probability density function of a hypergeometric random variable with param-
eters n, [, and m. The hypergeometric random variable X can be thought of as the number of items of a given type
in a random sample of size n that is drawn without replacement from a population of size / containing m items of

this type. The probability density function is

()

fork=i,i+1,i+2, ... min(n,m)
where j=max(0, n - I + m). HYPPR evaluates the expression using log gamma functions.

Comments

1. If the generic version of this function is used, the immediate result must be stored in a variable
before use in an expression. For example:
X = HYPPR(K, N, M L)
Y = SQRT( X)

must be used rather than

Y = SQRT(HYPPR(K, N, M L))
If this is too much of a restriction on the programmer, then the specific name can be used without

this restriction.

2. Informational errors

Type Code Description

1 5 The input argument, K, is less than zero.

1 6 The input argument, K, is greater than the sample size.
Example

Suppose Xis a hypergeometric random variable with N= 100, L = 1000, and M= 70. In this example, we evaluate

the probability function at 7.

USE UMACH_| NT
USE HYPPR I NT

IMPLICIT  NONE

| NTEGER K, L, M N, NOUT
REAL PR
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CALL UMACH (2, NOUT)
K =7

N = 100

L = 1000

M = 70

PR = HYPPR(K, N, M L)

VRl TE ( NOUT, 99999) PR
99999 FORMAT (' The probability that X is equal to 7 is
END

', F6.4)

Output

The probability that X is equal to 7 is 0.1628
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POIDF

This function evaluates the Poisson cumulative distribution function.

Function Return Value

POIDF — Function value, the probability that a Poisson random variable takes a value less than or equal
to K (Output)

Required Arguments
K — Argument for which the Poisson cumulative distribution function is to be evaluated. (Input)

THETA — Mean of the Poisson distribution. (Input)
THETA must be positive.

FORTRAN 90 Interface

Generic: PO DF (K, THETA)
Spedcific: The specific interface names are S_PO DF and D_PO DF.

FORTRAN 77 Interface

Single: PO DF (K, THETA)
Double: The double precision name is DPOl DF.
Description

The function POl DF evaluates the cumulative distribution function of a Poisson random variable with parameter
THETA. THETA, which is the mean of the Poisson random variable, must be positive. The probability function
(with 8 = THETA) is

f(x) = e~ 90/, forx=0, 1,2,...
The individual terms are calculated from the tails of the distribution to the mode of the distribution and summed.
PO DF uses the recursive relationship

f(x + 1) =f(x)0/(x + 1), forx=0,1,2,..k-1,
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with f(0) = e ~®.

Comments

Informational error

Type Code Description
1 1 The input argument, K, is less than zero.
Example

Suppose Xis a Poisson random variable with 8 = 10. In this example, we evaluate the distribution function at 7.

USE UMACH | NT

USE POl DF_I NT
IMPLICIT ~ NONE
INTEGER K, NOUT
REAL DF, THETA

CALL UMACH (2, NOUT)
K 7

THETA = 10.0
DF PO DF( K, THETA)
WRI TE ( NOUT, 99999) DF
99999 FORMAT (' The probag)ility that Xis less than or equal to ', &
'7is ', F6.4

END

Output

The probability that Xis less than or equal to 7 is 0.2202
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POIPR

This function evaluates the Poisson probability density function.

Function Return Value

POIPR — Function value, the probability that a Poisson random variable takes a value equal to K
(Output)

Required Arguments
K — Argument for which the Poisson probability density function is to be evaluated. (Input)

THETA — Mean of the Poisson distribution. (Input)
THETA must be positive.

FORTRAN 90 Interface

Generic: PO PR(K THETA)
Spedcific: The specific interface names are S_PO PRand D_PO PR

FORTRAN 77 Interface

Single: PO PR(K THETA)
Double: The double precision name is DPOl PR
Description

The function POl PR evaluates the probability density function of a Poisson random variable with parameter
THETA. THETA, which is the mean of the Poisson random variable, must be positive. The probability function
(with 8 = THETA) is

f(x) = e~ O0k/k!, fork=0,1,2,...

PO PR evaluates this function directly, taking logarithms and using the log gamma function.
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Figure 22, Poisson Probability Function

Comments

Informational error

Type Code Description

1 1

Example

Suppose Xis a Poisson random variable with 8 = 10. In this example, we evaluate the probability function at 7.

USE UMACH | NT
USE POl PRI NT
IMPLICIT ~ NONE

I NTEGER K, NOUT
REAL PR, THETA

CALL UMACH (2, NOUT)
K 7

THETA 10.0
PR PO PR( K, THETA)
WRI TE (NOUT, 99999) PR
99999 FORMAT (' The probability that X is equal
END

to 7 is '

The input argument, K, is less than zero.

F6. 4)
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Output

The probability that X is equal to 7 is 0.0901
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UNDDF

This function evaluates the discrete uniform cumulative distribution function.

Function Return Value

UNDDF — Function value, the probability that a uniform random variable takes a value less than or equal
to |l X (Output)

Required Arguments
IX — Argument for which the discrete uniform cumulative distribution function is to be evaluated. (Input)

N — Scale parameter. Nmust be greater than 0. (Input)

FORTRAN 90 Interface

Generic: UNDDF (I X, N)
Specific: The specific interface names are S_UNDDF and D_UNDDF.

FORTRAN 77 Interface

Single: UNDDF (I X N)
Double: The double precision name is DUNDDF.
Description

The notation below uses the floor and ceiling function notation, | .| and[.].

The function UNDDF evaluates the discrete uniform cumulative probability distribution function with scale param-
eter N defined

Example

In this example, we evaluate the probability function at | X=3, N=5.
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USE UMACH_| NT

USE UNDDF_| NT

I MPLI CI T NONE

| NTEGER NOUT, |X, N

REAL PR

CALL UMACH(2, NOUT)

IX =3

N=5

PR = UNDDF(IX, N)

WRI TE (NOUT, 99999) IX, N, PR
99999 FORMAT (' UNDDF(', 12, ', ', 12, ') ="', F6.4)

END

Output

UNDDF( 3, 5) = 0.6000
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UNDIN

This function evaluates the inverse of the discrete uniform cumulative distribution function.

Function Return Value

UNDIN — Integer function value. The probability that a uniform random variable takes a value less than
or equal to the returned value is the input probability, P. (Output)

Required Arguments

P — Probability for which the inverse of the discrete uniform cumulative distribution function is to be
evaluated. P must be nonnegative and less than or equal to 1.0. (Input)

N — Scale parameter. Nmust be greater than 0. (Input)

FORTRAN 90 Interface

Generic: UNDI N(P, N
Specific: The specific interface names are S_UNDI Nand D_UNDI N

FORTRAN 77 Interface

Single: UNDI N (P, N)
Double: The double precision name is DUNDI N.
Description

The notation below uses the floor and ceiling function notation, | .| and[.].

The function UNDI N evaluates the inverse distribution function of a discrete uniform random variable with scale
parameter N, defined
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Example

In this example, we evaluate the inverse probability function at P=0.6, N=5.

USE UMACH | NT

USE UNDI N_| NT

I MPLI CI T NONE

I NTEGER NOUT, N, |X

REAL P

CALL UMACH(2, NOUT)

P = 0.60

N=5

I X = UNDI N(P,

WRI TE (NOUT, 99999) P, N, IX
99999 FORMAT (' UNDIN(', F4.2, ', ', 12"') ="', 12)

END

Output

UNDI N(0.60, 5) = 3
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UNDPR

This function evaluates the discrete uniform probability density function.

Function Return Value

UNDPR — Function value, the probability that a random variable from a uniform distribution having scale
parameter Nwill be equal to | X. (Output)

Required Arguments
IX — Argument for which the discrete uniform probability density function is to be evaluated. (Input)

N — Scale parameter. Nmust be greater than 0. (Input)

FORTRAN 90 Interface

Generic: UNDPR (I X, N)
Specific: The specific interface names are S_UNDPRand D_UNDPR

FORTRAN 77 Interface

Single: UNDPR(I X N)
Double: The double precision name is DUNDPR
Description

The discrete uniform PDF is defined for positive integers x in the range 1,...N, N > 0. It has the value

y= f<x|N> = %, 1 <x<N,and y=0, x> N.Allowingvalues of x resultinginy=0, x> N isa
convenience.

Example

In this example, we evaluate the discrete uniform probability density function at | X=3, N=5.

USE UMACH | NT
USE UNDPR_| NT
I MPLI CI T NONE
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I NTEGER NOUT, |X, N

REAL PR
CALL UMACH(2, NOUT)
IX = 3
N=5
PR = UNDPR(I X, N)
VR TE (NOUT, 99999) IX, N, PR

99999 FORMAT (' UNDPR(', 12, ', ', 12, ') ="', F6.4)

END

Output

UNDPR( 3, 5) = 0.2000
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AKS1DF

This function evaluates the cumulative distribution function of the one-sided Kolmogorov-Smirnov goodness of fit

D" or D" test statistic based on continuous data for one sample.

Function Return Value

AKS1DF — The probability of a smaller D. (Output)

Required Arguments

NOBS — The total number of observations in the sample. (Input)

D — The D" or D test statistic. (Input)
Dis the maximum positive difference of the empirical cumulative distribution function (CDF) minus

the hypothetical CDF or the maximum positive difference of the hypothetical CDF minus the empiri-
cal CDF.

FORTRAN 90 Interface

Generic: AKS1DF (NOBS, D)
Spedcific: The specific interface names are S_AKS1DF and D_AKS1DF.

FORTRAN 77 Interface

Single: AKS1DF (NOBS, D)
Double: The double precision name is DKS1DF.
Description

Routine AKS1DF computes the cumulative distribution function (CDF) for the one-sided Kolmogorov-Smirnov

one-sample D" or D statistic when the theoretical CDF is strictly continuous. Let A(x) denote the theoretical distri-
bution function, and let S,,(x) denote the empirical distribution function obtained from a sample of size NOBS.

Then, the D statistic is computed as
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D" = sup[F(x) =S, (x) ]

while the one-sided D" statistic is computed as
D = sup[Sn(x) —F(x) ]
X

Exact probabilities are computed according to a method given by Conover (1980, page 350) for sample sizes of
80 or less. For sample sizes greater than 80, Smirnov's asymptotic result is used, that is, the value of the CDF is

takenas 1 — e’z”“’Z, where d is D* or D" (Kendall and Stuart, 1979, page 482). This asymptotic expression is conser-
vative (the value returned by AKS1DF is smaller than the exact value, when the sample size exceeds 80).

Comments
1. Workspace may be explicitly provided, if desired, by use of AK21DF/ DK21DF. The reference is:

AK2DF( NOBS, D, VK)
The additional argument is:
WK — Work vector of length 3* NOBS + 3 if NOBS < 80. WKis not used if NOBS is
greater than 80.

2. Informational errors

Type Code Description

1 2 Since the Dtest statistic is less than zero, the distribution function is zero
atD.

1 3 Since the Dtest statistic is greater than one, the distribution function is
one atD.

3. If NOBS < 80, then exact one-sided probabilities are computed. In this case, on the order of NOBS?
operations are required. For NOBS > 80, approximate one-sided probabilities are computed. These

approximate probabilities require very few computations.

4. An approximate two-sided probability for the D= max (D", D) statistic can be computed as twice the
AKS1DF probability for Diminus one, if the probability from AKS1DF is greater than 0.5).
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Programming Notes

Routine AKS1DF requires on the order of NOBS? operations to compute the exact probabilities, where an oper-

ation consists of taking ten or so logarithms. Because so much computation is occurring within each “operation,”

AKS1DF is much slower than its two-sample counterpart, function AKS2 DF.

Example

In this example, the exact one-sided probabilities for the tabled values of D™ or D7, given, for example, in Conover

(1980, page 462), are computed. Tabled values at the 10% level of significance are used as input to AKS1DF for
sample sizes of 5 to 50 in increments of 5 (the last two tabled values are obtained using the asymptotic critical

values of

The resulting

1.07/VNOBS

probabilities should all be close to 0.90.

USE UVACH_I NT
USE AKS1DF_| NT

IMPLICIT ~NONE
| NTEGER I, NOBS, NOUT
REAL D( 10)

DATA D/ 0. 447, 0.323, 0.266, 0.232, 0.208, 0.190, 0.177, 0.165, &

CAL
DO

0.160, 0.151/
L UMACH (2, NOUT)

10 =1, 10
NOBS = 5*|

WRI TE (NOUT, 99999) D(1),

NOBS, AKS1DF(NOBS, (1))

99999 FORVAT (' One-sided Probability for D=", F8.3, with NOBS ' &
, ‘="', 12, " is ', F8.4)
10 CONTI NUE
END
Output
One-sided Probability for D = 0.447 with NOBS = 5 is 0. 9000
One-sided Probability for D = 0.323 with NOBS = 10 is 0. 9006
One-sided Probability for D = 0.266 with NOBS = 15 is 0. 9002
One-sided Probability for D = 0.232 with NOBS = 20 is 0. 9009
One-sided Probability for D = 0.208 with NOBS = 25 is 0. 9002
One-sided Probability for D = 0.190 with NOBS = 30 is 0. 8992
One-sided Probability for D = 0.177 with NOBS = 35 is 0. 9011
One-sided Probability for D = 0.165 with NOBS = 40 is 0. 8987
One-sided Probability for D = 0.160 with NOBS = 45 is 0. 9105
One-sided Probability for D = 0.151 with NOBS = 50 is 0. 9077
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AKS2DF

This function evaluates the cumulative distribution function of the Kolmogorov-Smirnov goodness of fit D test sta-
tistic based on continuous data for two samples.

Function Return Value

AKS2DF — The probability of a smaller D. (Output)

Required Arguments
NOBSX — The total number of observations in the first sample. (Input)
NOBSY — The total number of cbservations in the second sample. (Input)

D — The Dtest statistic. (Input)
Dis the maximum absolute difference between empirical cumulative distribution functions (CDFs) of

the two samples.

FORTRAN 90 Interface

Generic: AKS2DF (NOBSX, NOBSY, D)
Specific: The specific interface names are S_AKS2DF and D_AKS2DF.

FORTRAN 77 Interface

Single: AKS2DF (NOBSX, NOBSY, D)
Double: The double precision name is DKS2DF.
Description

Function AKS2DF computes the cumulative distribution function (CDF) for the two-sided Kolmogorov-Smirnov
two-sample D statistic when the theoretical CDF is strictly continuous. Exact probabilities are computed according
to a method given by Kim and Jennrich (1973). Approximate asymptotic probabilities are computed according to
methods also given in this reference.

Let F,(x) and G,,(x) denote the empirical distribution functions for the two samples, based on n = NOBSX and

m = NOBSY observations. Then, the D statistic is computed as
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D= sup|F,(x)=G,(x) |

Comments

1. Workspace may be explicitly provided, if desired, by use of AK22DF/ DK22DF. The reference is:

AK22DF ( NOBSX, NOBSY, D, VK)
The additional argument is:

WK — Work vector of length max(NOBSX, NOBSY) + 1.

2. Informational errors

Type Code Description

1 2 Since the D test statistic is less than zero, then the distribution function is
zero at D.

1 3 Since the D test statistic is greater than one, then the distribution func-

tionis one at D.

Programming Notes

Function AKS2DF requires on the order of NOBSX * NOBSY operations to compute the exact probabilities,
where an operation consists of an addition and a multiplication. For NOBSX* NOBSY less than 10000, the exact
probability is computed. If this is not the case, then the Smirnov approximation discussed by Kim and Jennrich
(1973) is used if the minimum of NOBSX and NOBSY is greater than ten percent of the maximum of NOBSX and
NOBSY, or if the minimum is greater than 80. Otherwise, the Kolmogorov approximation discussed by Kim and
Jennrich (1973) is used.

Example

Function AKS2DF is used to compute the probability of a smaller D statistic for a variety of sample sizes using
values close to the 0.95 probability value.

USE UMACH | NT
USE AKS2DF_I NT

IMPLICIT  NONE
INTEGER |, NOBSX(10), NOBSY(10), NOUT
REAL D( 10)

DATA NOBSX/5, 20, 40, 70, 110, 200, 200, 200, 100, 100/

DATA NOBSY/ 10, 10, 10, 10, 10, 20, 40, 60, 80, 100/

DATA D/ 0.7, 0.55, 0.475, 0.4429, 0.4029, 0.2861, 0.2113, 0.1796, &
0.18, 0.18/
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CALL UMACH (2, NOUT)
|

DO 10 1=1, 10
!

VWRI TE (NOUT, 99999) D(1), NOBSX(I), NOBSY(l), &
AKS2DF( NOBSX( 1), NOBSY(1),D(1))
!
99999 FORVAT (' Probability for D=", F5.3, ' with NOBSX ="', 13, &
' 'and NOBSY ="', 13, ' is ', F9.6, '.")
10 CONTI NUE
END
Output

Probability for D= 0.700 with NOBSX = 5 and NOBSY = 10 is 0.980686.
Probability for D= 0.550 with NOBSX = 20 and NOBSY = 10 is 0.987553.
Probability for D= 0.475 with NOBSX = 40 and NOBSY = 10 is 0.972423.
Probability for D= 0.443 with NOBSX = 70 and NOBSY = 10 is 0.961646.
Probability for D= 0.403 with NOBSX = 110 and NOBSY = 10 is 0.928667.
Probability for D= 0.286 with NOBSX = 200 and NOBSY = 20 is 0.921126.
Probability for D= 0.211 with NOBSX = 200 and NOBSY = 40 is 0.917110.
Probability for D= 0.180 with NOBSX = 200 and NOBSY = 60 is 0.914520.
Probability for D= 0.180 with NOBSX = 100 and NOBSY = 80 is 0.908185.
Probability for D= 0.180 with NOBSX = 100 and NOBSY = 100 is 0.946098.
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ALNDF

This function evaluates the lognormal cumulative probability distribution function.

Function Return Value

ALNDF — Function value, the probability that a standard lognormal random variable takes a value less
than or equal to X. (Output)

Required Arguments
X — Argument for which the lognormal cumulative distribution function is to be evaluated. (Input)
AMU — Location parameter of the lognormal cumulative distribution function. (Input)

SIGMA — Shape parameter of the lognormal cumulative distribution function. SI GMA must be greater
than 0. (Input)

FORTRAN 90 Interface

Generic: ALNDF (X, AMJ, SI GVA)
Specific: The specific interface names are S_ALNDF and D_ALNDF.

FORTRAN 77 Interface

Single: ALNDF (X, AMJ SI GV
Double: The double precision name is DLNDF.
Description

The function ALNDF evaluates the lognormal cumulative probability distribution function, defined as
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F(x|po)
(2

%e dt

o %)
1 log(x V2
= g e

Example
In this example, we evaluate the probability distribution function at X=0.7137, AMJ= 0.0, SI GVA = 0.5.

USE UMACH | NT

USE ALNDF_| NT

I MPLI O T NONE

| NTEGER NOUT

REAL X, AMJ, SIGWA, PR
CALL UMACH(2, NOUT)

X = .7137
AMJ = 0.0
SIGVA = 0.5

PR = ALNDF(X, AMJ, S| GW)
WRI TE (NOUT, 99999) X, AMJ, SIGWA, PR

99999 FORMAT (' ALNDF(', F6.2, ', ', F4.2, ', ', F4.2, ') ="', F6.4)
END

Output

ALNDF( 0.71, 0.00, 0.50) = 0.2500
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ALNIN

This function evaluates the inverse of the lognormal cumulative probability distribution function.

Function Return Value

ALNIN — Function value, the probability that a lognormal random variable takes a value less than or
equal to the returned value is the input probability P. (Output)

Required Arguments
P — Probability for which the inverse of the lognormal distribution function is to be evaluated. (Input)
AMU — Location parameter of the lognormal cumulative distribution function. (Input)

SIGMA — Shape parameter of the lognormal cumulative distribution function. SI GMA must be greater
than 0. (Input)

FORTRAN 90 Interface

Generic: ALNI N (P, AMJ, SI GvA)
Specific: The specific interface names are S_ALNI Nand D_ALNI N.

FORTRAN 77 Interface

Single: ALNI N(P, AMJ SI GVK)
Double: The double precision name is DLNI N,
Description

The function ALNI N evaluates the inverse distribution function of a lognormal random variable with location
parameter AMJand scale parameter SI GVA. The probability that a standard lognormal random variable takes a
value less than or equal to the returned value is P.

Example

In this example, we evaluate the inverse probability function at P=0.25, AMJ= 0.0, SI GVA = 0.5.
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USE UMACH_| NT

USE ALNI N_I NT

I MPLI O T NONE

| NTEGER NOUT

REAL X, AMJ, SIGWA, P
CALL UMACH(2, NOUT)

P=.25
AMJ = 0.0
SIGVA = 0.5

X = ALNIN(P, AMUJ, SI GWA)
WRI TE (NOUT, 99999) P, AMJ, SIGWA, X

99999 FORMAT (' ALNIN(', F6.3, ', ', F4.2, ', ', F4.2, ') ="', F6.4)
END

Output

ALNIN( 0.250, 0.00, 0.50) = 0.7137
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ALNPR

This function evaluates the lognormal probability density function.

Function Return Value

ALNPR — Function value, the value of the probability density function. (Output)

Required Arguments
X — Argument for which the lognormal probability density function is to be evaluated. (Input)
AMU — Location parameter of the lognormal probability function. (Input)

SIGMA — Shape parameter of the lognormal probability function. SI GVIA must be greater than 0. (Input)

FORTRAN 90 Interface

Generic: ALNPR (X, AMJ, SI GVA)
Specific: The specific interface names are S_ALNPRand D_ALNPR

FORTRAN 77 Interface

Single: ALNPR (X, AMJ SI GV
Double: The double precision name is DLNPR
Description

The function ALNPR evaluates the lognormal probability density function, defined as
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20

1 (W)

f(xlpo) =

e
xov2x

Example
In this example, we evaluate the probability function at X=1.0, AMJ= 0.0, SI GVA=0.5.

USE UMACH I NT

USE ALNPR_| NT

I MPLI CI T NONE

| NTEGER NOUT

REAL X, AMJ, SIGVA, PR

CALL UMACH(2, NOUT)

X=1.0

AW = 0.0

SIGVA = 0.5

PR = ALNPR(X, AMJ, SI G\R)

WRI TE (NOUT, 99999) X, AMJ, SIGVA, PR
99999 FORMAT (' ALNPR(', F6.2, ', ', F4.2, ', ', F4.2, ') ="', F6.4)

END

Output

ALNPR( 1.00, 0.00, 0.50) = 0.7979
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ANORDF

This function evaluates the standard normal (Gaussian) cumulative distribution function.

Function Return Value

ANORDF — Function value, the probability that a normal random variable takes a value less than or equal
to X (Output)

Required Arguments

X — Argument for which the normal cumulative distribution function is to be evaluated. (Input)

FORTRAN 90 Interface

Generic: ANCORDF (X)
Specific: The specific interface names are S_ANORDF and D_ANORDF.

FORTRAN 77 Interface

Single: ANORDF (X)
Double: The double precision name is DNORDF.
Description

Function ANORDF evaluates the cumulative distribution function, @, of a standard normal (Gaussian) random
variable, that is,

d(x) = ﬁ .

The value of the distribution function at the point x is the probability that the random variable takes a value less
than or equal to x.

_2
e t/Zdt

The standard normal distribution (for which ANORDF is the distribution function) has mean of 0 and variance of

1. The probability that a normal random variable with mean and variance o is less than y is given by ANORDF
evaluated at (y - u)/o.
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d(X) is evaluated by use of the complementary error function, erfc. (See ERFC, IMSL MATH/LIBRARY Special Func-
tions). The relationship is:

O(x) = erfe(—x/v2.0) /2

0.8

ANORDF(x)

=
Y

0.2

o
[}
I T T N T TN TN I N T [N N T T A O |
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Figure 23, Standard Normal Distribution Function

Example

Suppose Xis a normal random variable with mean 100 and variance 225. In this example, we find the probability
that X is less than 90, and the probability that X is between 105 and 110.

USE UMACH | NT
USE ANORDE_| NT

IMPLICIT  NONE
| NTEGER NOUT
REAL P, X1, X2

CALL UMACH (2, NOUT)
X1 = (90.0-100.0)/15.0
P = ANORDF( X1)
VWRI TE ( NOUT, 99998) P
99998 FORVAT (' The probability that Xis less than 90 is ', F6.4)
X1 = (105.0-100.0)/15.0
X2 = (110.0-100.0)/15.0
P ANORDF( X2) - ANORDF( X1)
VWRI TE ( NOUT, 99999) P
99999 FORVAT (' ;I'he probability that X is between 105 and 110 is ', &
F6. 4

END
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Output
The probability that Xis less than 90 is 0.2525
The probability that X is between 105 and 110 is 0.1169
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ANORIN

This function evaluates the inverse of the standard normal (Gaussian) cumulative distribution function.

Function Return Value

ANORIN — Function value. (Output)

The probability that a standard normal random variable takes a value less than or equal to ANORI N
is P.

Required Arguments

P — Probability for which the inverse of the normal cumulative distribution function is to be evaluated.
(Input)
P must be in the open interval (0.0, 1.0).

FORTRAN 90 Interface

Generic: ANORI N (P)
Spedcific: The specific interface names are S_ANORI Nand D_ANORI N

FORTRAN 77 Interface

Single: ANCRI N (P)
Double: The double precision name is DNORI N.
Description

Function ANORI N evaluates the inverse of the cumulative distribution function, @, of a standard normal (Gauss-
ian) random variable, that is, ANORI N(P) = @ " (p), where

X
2
d(x) = ﬁj‘_weﬁ 2t

The value of the distribution function at the point x is the probability that the random variable takes a value less
than or equal to x. The standard normal distribution has a mean of 0 and a variance of 1.
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Example

In this example, we compute the point such that the probability is 0.9 that a standard normal random variable is
less than or equal to this point.

USE UMACH | NT
USE ANORI N_I NT
IMPLICIT NONE
INTEGER  NOUT
REAL P, X

CALL UMACH (2, NOUT)
P=0.9
X = ANORI N(P)
VRl TE ( NOUT, 99999) X
99999 FORMAT (' The 90th percentile of a standard nornal is ', F6.4)
END

Output

The 90th percentile of a standard normal is 1.2816
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ANORPR

This function evaluates the standard normal probability density function.

Function Return Value

ANORPR — Function value, the value of the probability density function. (Output)

Required Arguments

X — Argument for which the normal probability density function is to be evaluated. (Input)

FORTRAN 90 Interface

Generic: ANORPR (X)
Specific: The specific interface names are S_NORPRand D_NORPR

FORTRAN 77 Interface

Single: ANCRPR (X)
Double: The double precision name is DNORPR
Description

The function ANORPR evaluates the normal probability density function, defined as

2)

S(x) = ze

Example

In this example, we evaluate the probability function at X=0.5.

USE UMACH I NT
USE ANORPR | NT
I MPLI CI T NONE
| NTEGER NOUT
REAL X, PR

CALL UMACH(2, NOUT)
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X=0.5
PR = ANORPR( X)
WRI TE (NOUT, 99999) X, PR

99999 FORMAT (' ANORPR(', F4.2, ') = ', F6.4)
END

Output

ANORPR( 0. 50) = 0.3521
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BETDF

This function evaluates the beta cumulative distribution function.

Function Return Value

BETDF — Probability that a random variable from a beta distribution having parameters Pl Nand Q N
will be less than or equal to X (Output)

Required Arguments
X — Argument for which the beta distribution function is to be evaluated. (Input)

PIN — First beta distribution parameter. (Input)
Pl N must be positive.

QIN — Second beta distribution parameter. (Input)
Q Nmust be positive.

FORTRAN 90 Interface

Generic: BETDF (X PIN QN
Specific: The specific interface names are S_BETDF and D_BETDF.

FORTRAN 77 Interface

Single: BETDF (X, PIN Q N)
Double: The double precision name is DBETDF.
Description

Function BETDF evaluates the cumulative distribution function of a beta random variable with parameters PI N
and Q N This function is sometimes called the incomplete beta ratio and, with p = Pl Nand g = Q N is denoted

by (p, g). It is given by
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r s -
Lo~ T |, a0 a

where I(+) is the gamma function. The value of the distribution function /(p, g) is the probability that the random

variable takes a value less than or equal to x.

The integral in the expression above is called the incomplete beta function and is denoted by B (p, q). The constant

in the expression is the reciprocal of the beta function (the incomplete function evaluated at one) and is denoted
by Bp, q).

Function BETDF uses the method of Bosten and Battiste (1974).
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Figure 24, Beta Distribution Function
Comments
Informational errors
Type Code Description
1 1 Since the input argument Xis less than or equal to zero, the distribution
function is equal to zero at X.
1 2 Since the input argument X is greater than or equal to one, the distribu-

tion function is equal to one at X.
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Example

Suppose Xis a beta random variable with parameters 12 and 12. (X has a symmetric distribution.) In this example,
we find the probability that Xis less than 0.6 and the probability that X is between 0.5 and 0.6. (Since Xis a sym-
metric beta random variable, the probability that it is less than 0.5 is 0.5.)

99998

99999

Output

The pr
The pr

USE UMACH | NT
USE BETDF_| NT
IMPLICI T ~ NONE
INTEGER  NOUT

REAL P, PIN, QN X
CALL UMACH (2, NOUT)
PIN = 12.0

QN = 12.0

X =0.6

P = BETDF(X PIN, QN

VRI TE (NOUT, 99998) P

FORVAT (' The probability that Xis less than 0.6 is ', F6.4)

X =0.5

P =P - BETDF(X, PIN, QN

VRI TE (NOUT, 99999) P

FORMAT (' The probability that X is between 0.5 and 0.6 is ', &

F6. 4)
END
obability that Xis less than 0.6 is 0.8364
obability that X is between 0.5 and 0.6 is 0.3364
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BETIN

This function evaluates the inverse of the beta cumulative distribution function.

Function Return Value

BETIN — Function value. (Output)
The probability that a beta random variable takes a value less than or equal to BETI Nis P.

Required Arguments

P — Probability for which the inverse of the beta distribution function is to be evaluated. (Input)
P must be in the open interval (0.0, 1.0).

PIN — First beta distribution parameter. (Input)
Pl N must be positive.

QIN — Second beta distribution parameter. (Input)
Q Nmust be positive.

FORTRAN 90 Interface

Generic: BETIN(P,PINQ N
Specific: The specific interface names are S_BETI Nand D_BETI N.

FORTRAN 77 Interface

Single: BETIN(P,PINQ N
Double: The double precision name is DBETI N.
Description

The function BETI Nevaluates the inverse distribution function of a beta random variable with parameters Pl N
and Q N thatis, withP=P,p=PI N and g =Q N it determines x (equal to BETI N(P, PI N Q N)), such that
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T+ [ o1, g
P= g |, a0

where I'(+) is the gamma function. The probability that the random variable takes a value less than or equal to x is
P.

Comments
Informational errors
Type Code Description
3 1 The value for the inverse Beta distribution could not be found in 100 iter-

ations. The best approximation is used.

Example

Suppose Xis a beta random variable with parameters 12 and 12. (X has a symmetric distribution.) In this example,
we find the value xq such that the probability that X < xgis 0.9.

USE UMACH | NT

USE BETI N_I NT

IMPLICI T ~ NONE

INTEGER  NOUT

REAL P, PIN, QN X

CALL UMACH (2, NOUT)

PI'N 12.0

QN=12.0

P 0.9

X BETIN(P, PI N, Q N)
VWRI TE ( NOUT, 99999) X

99999 FORMAT (' X is less than ', F6.4, ' with probability 0.9.")
END

Output

X is less than 0.6299 with probability 0.9.
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BETPR

This function evaluates the beta probability density function.

Function Return Value

BETPR — Function value, the value of the probability density function. (Output)

Required Arguments

X — Argument for which the beta probability density function is to be evaluated. (Input)

PIN — First beta distribution parameter. (Input)
Pl N must be positive.

QIN — Second beta distribution parameter. (Input)
Q Nmust be positive.

FORTRAN 90 Interface

Generic: BETPR(X, PIN QN
Specific: The specific interface names are S_BETPRand D_BETPR

FORTRAN 77 Interface

Single: BETPR(X, PIN Q N)
Double: The double precision name is DBETPR
Description

The function BETPR evaluates the beta probability density function with parameters Pl Nand Q N Using x = X,
a =PI Nand b =Q N the beta distribution is defined as
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f(xla,b)=%(l—x>b_1xa_l, ab>0, 0<x<l1

The reciprocal of the beta function used as the normalizing factor is computed using IMSL function BETA (see
Chapter 4, “"Gamma Functions and Related Functions”).

Example
In this example, we evaluate the probability function at X=0.75, Pl N=2.0, Q@ N=0.5.

USE UMACH | NT

USE BETPR | NT

I MPLI I T NONE

| NTEGER NOUT

REAL X, PIN, QN, PR

CALL UMACH(2, NOUT)
75

X = .
PIN = 2.0
QN=0.5

PR = BETPR(X, PIN,
WRI TE (NOUT, 99999) X, PIN, Q N, PR

99999 FORMAT (' BETPR(', F4.2, ', ', F4.2, ', ', F4.2, ') ="', F6.4)
END

Output

BETPR(0. 75, 2.00, 0.50) = 1.1250
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BETNDF

This function evaluates the noncentral beta cumulative distribution function (CDF).

Function Return Value

BETNDF — Probability that a random variable from a beta distribution having shape parameters SHAPE1
and SHAPEZ2 and noncentrality parameter LAMBDA will be less than or equal to X. (Output)

Required Arguments

X — Argument for which the noncentral beta cumulative distribution function is to be evaluated. (Input)
X must be non-negative and less than or equal to 1.

SHAPE1 — First shape parameter of the noncentral beta distribution. (Input)
SHAPE1 must be positive.

SHAPE2 — Second shape parameter of the noncentral beta distribution. (Input)
SHAPE2 must be positive.

LAMBDA — Noncentrality parameter. (Input)
LAMBDA must be non-negative.

FORTRAN 90 Interface

Generic: BETNDF (X, SHAPE1, SHAPE2, LAMBDA)
Specific: The specific interface names are S_BETNDF and D_BETNDF.
Description

The noncentral beta distribution is a generalization of the beta distribution. If Zis a noncentral chi-square ran-
dom variable with noncentrality parameter A and 2e¢y degrees of freedom, and Y'is a chi-square random variable

with 2o, degrees of freedom which is statistically independent of Z, then

Z _ _ af
Z+Y " af ta

X =

is a noncentral beta-distributed random variable and
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OtzZ a2X

Fay = -x)

is a noncentral F-distributed random variable. The CDF for noncentral beta variable X can thus be simply defined
in terms of the noncentral F CDF:

CDFnCﬁ<x,a1,a2,/1> = CDFncF<f,2a1,2a2,/1>

where CDFnc[)’<xaalaa29}'> is a noncentral beta CDF with x = X, ay = SHAPEL, o, = SHAPEZ2, and noncentrality
parameter A = LANVBDA CDFmF<f,2al,2a2,,1> is a noncentral F CDF with argument f, numerator and denomi-
nator degrees of freedom 2o and 2« respectively, and noncentrality parameter A and:

f:ﬂ X . sz
a1 -x a f +a,

(See documentation for function FNDF for a discussion of how the noncentral F CDF is defined and calculated.)

With a noncentrality parameter of zero, the noncentral beta distribution is the same as the beta distribution.

Example

This example traces out a portion of a noncentral beta distribution with parameters SHAPEL = 50,
SHAPE2 = 5, and LAMBDA= 10.

USE UMACH | NT

USE BETNDE_I NT

USE FNDF_| NT

I MPLI CI T NONE

| NTEGER NOUT, |

REAL X, LAVBDA, SHAPE1l, SHAPE2, &

BCDFV, FCDFV, F(8)

DATA F /0.0, 0.4, 0.8, 1.2, &

1.6, 2.0, 2.8, 4.0 /

CALL UMACH (2, NOUT)
.0

SHAPE1 = 50

SHAPE2 = 5.0

LAMBDA = 10.0

WRI TE (NOUT,' (/" SHAPE1l: ", F4.0, &
& "; SHAPE2: ", F4.0, &
&'; LAVBDA: ", F4.0 // &

& 6x, " X", 6x, " NCBETCDF( X) ", 3x, "NCBETCDF( X) "/ &
& 14x, "expected")') SHAPEl, SHAPE2, LANMBDA

DOl =1, 8
X = (SHAPE1*F(1)) / (SHAPE1*F(l) + SHAPE2)
FCDFV = FNDF(F(1), 2* SHAPE1, 2* SHAPE2, LANVBDA)
BCDFV = BETNDF(X, SHAPE1, SHAPE2, LAMBDA)
WRI TE (NOUT,' (2X, F8.6, 2(2X, E12.6))') &

X, FCDFV, BCDFV
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END DO
END
Output
SHAPE1l: 50.; SHAPEZ2: 5.; LAMBDA: 10.
X NCBETCDF( X) NCBETCDF( X)
expect ed
0. 000000 0. O0O0O000E+00 0. 000000E+00
0. 800000 O0.488790E-02 0.488790E-02
0.888889 0.202633E+00 0.202633E+00
0.923077 0.521143E+00 0.521143E+00
0.941176 0. 733853E+00 0. 733853E+00
0.952381 0.850413E+00 0.850413E+00
0. 965517 0.947125E+00 0. 947125E+00
0. 975610 0. 985358E+00 0. 985358E+00
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BETNIN

This function evaluates the inverse of the noncentral beta cumulative distribution function (CDF).

Function Return Value

BETNIN — Function value, the value of the inverse of the cumulative distribution function evaluated at P.
The probability that a noncentral beta random variable takes a value less than or equal to BETNI Nis

P. (Output)

Required Arguments

P — Probability for which the inverse of the noncentral beta cumulative distribution function is to be eval-

uated. (Input)
P must be non-negative and less than or equal to 1.

SHAPE1 — First shape parameter of the noncentral beta distribution. (Input)
SHAPE1 must be positive.

SHAPE2 — Second shape parameter of the noncentral beta distribution. (Input)
SHAPE2 must be positive.

LAMBDA — Noncentrality parameter. (Input)
LAMBDA must be non-negative.

FORTRAN 90 Interface

Generic: BETNI N (P, SHAPE1, SHAPE2, LAMBDA)
Specific: The specific interface names are S_BETNI Nand D_BETNI N
Description

The noncentral beta distribution is a generalization of the beta distribution. If Z is a noncentral chi-square ran-
dom variable with noncentrality parameter 1 and 2a, degrees of freedom, and Y is a chi-square random variable

with 2a, degrees of freedom which is statistically independent of Z, then
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Z  _ o f
Z+Y " af v o

X =
is a noncentral beta-distributed random variable and

azz a2X

Py =0 (1-x)

is a noncentral F-distributed random variable. The CDF for noncentral beta variable X can thus be simply defined
in terms of the noncentral F CDF:

p = CDF, p(%,01,00,4) = CDF oo f 201,205,
where CDF@(%“n%ﬁ) is a noncentral beta CDF with x = X, &y = SHAPEL, &, = SHAPEZ2, and noncentrality

parameter A= LAVBDA, CDFncF<f,2al’2a2,,1) is a noncentral £ CDF with argument f, numerator and denom-

inator degrees of freedom 2 & and 2 &x; respectively, and noncentrality parameter A; p = the probability that F < f
= the probability that X < x and:

f_az X . _L

= —— X =
o 1-x a f+a,

(See the documentation for function FNDF for a discussion of how the noncentral F CDF is defined and calcu-
lated.) The correspondence between the arguments of function BETNI N( P, SHAPE1,SHAPE2,LAMBDA) and
the variables in the above equations is as follows: «; = SHAPEL, o, = SHAPE2, A = LAMBDA, and p = P.

Function BETNI Nevaluates
_ -1
x=CDF ncﬂ<p,a1,a2,/l>
by first evaluating

f= CDFflncF< p20y,20,0.)
and then solving for x using
o f

TSt

(See the documentation for function FNI N for a discussion of how the inverse noncentral F CDF is calculated.)

X
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Example

This example traces out a portion of an inverse noncentral beta distribution with parameters

SHAPE1 = 50, SHAPE2 = 5, and LAVMBDA= 10.

USE UMACH | NT
USE BETNDF_| NT
USE BETNI N_I NT
USE UMVACH T NT

IMPLI CI T NONE

INTEGER :: NOUT, |

REAL :: SHAPE1 = 50.0, SHAPE2=5.0, LAVBDA=10.0

REAL . X, CDF, CDFINV

REAL . FO(8)=(/ 0.0, .4, .8, 1.2, 1.6, 2.0, 2.8, 4.0 /)

CALL UMACH (2, NOUT)

WRI TE (NOUT,' (/" SHAPE1l: ", F4.0, SHAPE2: ", F4.0,'// &
** LAMBDA: ", F4.0 // ' [/ &

X P = CDF(X) CDFI NV(P) ") ") &

SHAPE1, SHAPE2, LAMBDA
DOI =1,

X = (SHAPE1*FO(1))/(SHAPE2 + SHAPEL*FO(I))
CDF = BETNDF(X, SHAPE1, SHAPE2, LAVBDA)

CDFI NV = BETNI N( CDF, SHAPE1, SHAPE2, LANBDA)
WRI TE (NOUT,' (3(2X, E12.6))') X, CDF, CDFINV

END DO
END

Output

SHAPEl: 50. SHAPE2: 5. LAVBDA: 10

X P = CDF(X) CDFI NV( P)
0. 000000E+00 0. 000000E+00 0. 000000E+00
0. 800000E+00 0. 488791E-02 0. 800000E+00
0. 888889E+00 0.202633E+00 0. 888889E+00
0.923077E+00 0.521144E+00 0. 923077E+00
0.941176E+00 0. 733853E+00 0. 941176E+00
0.952381E+00 0.850413E+00 0. 952381E+00
0. 965517E+00 0. 947125E+00 0. 965517E+00
0.975610E+00 0.985358E+00 0. 975610E+00
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BETNPR

This function evaluates the noncentral beta probability density function.

Function Return Value

BETNPR — Function value, the value of the probability density function. (Output)

Required Arguments

X — Argument for which the noncentral beta probability density function is to be evaluated. (Input)
X must be non-negative and less than or equal to 1.

SHAPE1 — First shape parameter of the noncentral beta distribution. (Input)
SHAPE1 must be positive.

SHAPE2 — Second shape parameter of the noncentral beta distribution. (Input)
SHAPE2 must be positive.

LAMBDA — Noncentrality parameter. (Input)
LAMBDA must be non-negative.

FORTRAN 90 Interface

Generic: BETNPR (X, SHAPE1, SHAPE2, LAMBDA)
Specific: The specific interface names are S_BETNPRand D_BETNPR
Description

The noncentral beta distribution is a generalization of the beta distribution. If Zis a noncentral chi-square ran-
dom variable with noncentrality parameter ] and 2a, degrees of freedom, and Yis a chi-square random variable

with 2a, degrees of freedom which is statistically independent of Z, then

Z __ o f
Z+Y a1f+0c2

X:

is a noncentral beta-distributed random variable and
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OtzZ a2X

Fay = -x)

is a noncentral F-distributed random variable. The PDF for noncentral beta variable X can thus be simply defined
in terms of the noncentral F PDF:

daf

PDFncﬂ<x,a1,a2,j,> = PDFnCF<f,2a1,2a2,/l)a

Where PDFncﬁ<x,a1,oc2,/l> is a noncentral beta PDF with x = X, oy = SHAPEL, o, = SHAPEZ, and noncentrality
parameter A= LAVBDA; PDFmF<f,2a1,2oc2,,1> is a noncentral £ PDF with argument f, numerator and denomi-

nator degrees of freedom 2o and 2« respectively, and noncentrality parameter A; and:
X alf

)
f_ql x> x_a1f+a2’

2
a _ <a2+a1f> _ %1
dx L) *1 (17)6)2

(See the documentation for function FNPR for a discussion of how the noncentral F PDF is defined and
calculated.)

With a noncentrality parameter of zero, the noncentral beta distribution is the same as the beta distribution.

Example

This example traces out a portion of a noncentral beta distribution with parameters SHAPE1 = 50,
SHAPE2 = 5, and LAMBDA= 10.

USE UMACH_| NT
USE BETNPR | NT
USE FNPR | NT

I VPLI CI T NONE

I NTEGER NOUT, |

REAL X, LAMBDA, SHAPE1l, SHAPE2, &
BPDFV, FPDFV, DBETNPR, DFNPR, F(8), &
BPDFVEXPECT, DFDX

DATA F /0.0, 0.4, 0.8, 3.2, 5.6, 8.8, 14.0, 18.0/

CALL UMACH (2, NOUT)
SHAPEL = 50. 0

SHAPE2 = 5.0

LAVBDA = 10. 0

WRI TE (NOUT,' (/" SHAPEl: ", F4.0, "; SHAPE2: ", F4.0, "; '// &
"LAMBDA: ", F4.0 // 6x,"X",6x, "NCBETPDF(X)", 3x, "NCBETPDF // &
NN 14x, "expected")') SHAPEL, SHAPE2, LAMBDA
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BETNPR

DO |
X

DFDX =

END

Output

SHAPEL:

coooocoo0

X

. 000000

800000
888889
969697
982456
988764

. 992908
. 994475

50.

1, 8

(SHAPEL*F(1)) / (SHAPEL*F(1) + SHAPE2)
X)**Z
FPDFV = FNPR(F(1), 2* SHAPEL, 2* SHAPE2, LAVBDA)
BPDFVEXPECT = DFDX * FPDFV
BPDFV = BETNPR(X, SHAPE1, SHAPE2,
WRI TE (NOUT,' (2X, F8.6, 2(2X, E12.6))')
END DO

;  SHAPE2:

( SHAPE2/ SHAPEL) /

5.; LAMBDA

NCBETPDF(X)  NCBETPDF( X)

expect ed

. 000000E+00
. 243720E+00
. 658624E+01
402367E+01
. 919544E+00
. 219100E+00
. 436654E-01
. 175215E- 01

. 000000E+00
. 243720E+00
. 658624E+01
402365E+01
. 919542E+00
. 219100E+00
. 436647E-01
. 175217E- 01

(1.0 -

LAVBDA)

10.

X, BPDFVEXPECT, BPDFV
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BNRDF

This function evaluates the bivariate normal cumulative distribution function.

Function Return Value

BNRDF — Function value, the probability that a bivariate normal random variable with correlation RHO
takes a value less than or equal to X and less than or equal to Y. (Output)

Required Arguments
X — One argument for which the bivariate normal distribution function is to be evaluated. (Input)
Y — The other argument for which the bivariate normal distribution function is to be evaluated. (Input)

RHO — Correlation coefficient. (Input)

FORTRAN 90 Interface

Generic: BNRDF (X, Y, RHO
Specific: The specific interface names are S_BNRDF and D_BNRDF.

FORTRAN 77 Interface

Single: BNRDF (X, Y, RHO
Double: The double precision name is DBNRDF.
Description

Function BNRDF evaluates the cumulative distribution function F of a bivariate normal distribution with means of
zero, variances of one, and correlation of RHQ that is, with p = RHO and |p| < 1,

u* - 2puv + Vv

Y
F(x,y) = mﬁw J_pr(—W) du dv

To determine the probability that U < ug and V < v, where (U, VT is a bivariate normal random variable with

mean M = (Mg, uV)Tand variance-covariance matrix
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. 0%/ oyy
Z . Ouv U%/

transform (U, V)T to a vector with zero means and unit variances. The input to BNRDF would be
X = (uo—yU> /oy, Y = (vo—/z,/> /oy, and p =0,/ (anV)

Function BNRDF uses the method of Owen (1962, 1965). Computation of Owen’s T-function is based on code by
M. Patefield and D. Tandy (2000). For |p| = 1, the distribution function is computed based on the univariate statis-
tic, Z=min(x, y), and on the normal distribution function ANORDF.

Example

Suppose (X, Y) is a bivariate normal random variable with mean (0, 0) and variance-covariance matrix

(1.0 O.9>
09 1.0
In this example, we find the probability that X'is less than -2.0 and Yis less than 0.0.

USE BNRDF_| NT
USE UMACH_| NT
IMPLICI T ~ NONE
INTEGER  NOUT

REAL P, RHO X Y
|

CALL UMACH (2, NOUT)

X =-2.0

Y =0.0

RHO = 0.9

P = BNRDF(X, Y, RHO)

VWRI TE ( NOUT, 99999) P
99999 FORMAT (' The probability that Xis less than -2.0 and Y ', &
'is less than 0.0 is ', F6.4)
END

Output

The probability that Xis less than —2.0 and Y is less than 0.0 is 0.0228
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CHIDF

This function evaluates the chi-squared cumulative distribution function.

Function Return Value

CHIDF — Function value, the probability that a chi-squared random variable takes a value less than or
equal to CHSQ (Output)

Required Arguments
CHSQ — Argument for which the chi-squared distribution function is to be evaluated. (Input)

DF — Number of degrees of freedom of the chi-squared distribution. (Input)
DF must be positive.

Optional Arguments

COMPLEMENT — Logical. If TRUE, the complement of the chi-squared cumulative distribution function
is evaluated. If FALSE, the chi-squared cumulative distribution function is evaluated. (Input)
See the Description section for further details on the use of COMPLEMENT.
Default: COMPLEMENT = FALSE..

FORTRAN 90 Interface

Generic; CHI DF (CHSQDF [, ...])
Specific: The specific interface names are S_CHI DF and D_CHI DF.

FORTRAN 77 Interface

Single: CHI DF (CHSQ DF)
Double: The double precision name is DCHI DF.
Description

Function CHI DF evaluates the cumulative distribution function, F, of a chi-squared random variable with DF
degrees of freedom, that is, with v=DF, and x = CHSQ
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X

— 1 —1/2 v/2-1
F(x,v)= m.‘-e Mgy
0

where I(-) is the gamma function. The value of the distribution function at the point x is the probability that the
random variable takes a value less than or equal to x.

For v> v, = {343 for double precision, 171 for single precision}, CHI DF uses the Wilson-Hilferty approximation
(Abramowitz and Stegun [A&S] 1964, equation 26.4.17) for p in terms of the normal CDF, which is evaluated using
function ANCRDF.

For v < V., CHI DF uses series expansions to evaluate p: for x < v, CHl DF calculates p using A&S series 6.5.29,

and for x = v, CHI DF calculates p using the continued fraction expansion of the incomplete gamma function
given in A&S equation 6.5.31.

If COMPLEMENT = . TRUE,, the value of CHI DF at the point xis 1 - p, where 1 - p is the probability that the ran-
dom variable takes a value greater than x. In those situations where the desired end result is 1- p, the user can
achieve greater accuracy in the right tail region by using the result returned by CHI DF with the optional argument
COMPLEMENT set to .TRUE. rather than by using 1 - p where p is the result returned by CHI DF with
COMPLEMENT set to .FALSE..
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Figure 25, Chi-Squared Distribution Function
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Comments

Informational error

Type Code Description

1 1 Since the input argument, CHSQ is less than zero, the distribution func-
tion is zero at CHSQ.

2 3 The normal distribution is used for large degrees of freedom. However, it
has produced underflow. Therefore, the probability, CHI DF, is set to zero.

Example

Suppose Xis a chi-squared random variable with 2 degrees of freedom. In this example, we find the probability

that Xis less than 0.15 and the probability that X is greater than 3.0.

USE CHI DF_I NT
USE UMACH | NT
IMPLICIT ~ NONE

I NTEGER NOUT
REAL CHSQ DF, P

DF 2.0
CHSQ 0. 15
CHI DF( CHSQ, DF)
V\RI TE (N(lJT 99998) P
99998 FORMAT (' The probability that chi-squared with 2 df is less ', &
"than 0.15 is ', F6.4)
CHSQ = 3.0
P = CHI DF( CHSQ DF, conpl ement=.true.)
VRI TE (NOUT, 99999) P
99999 FORVAT (' The probability that chi-squared with 2 df is greater ' &
, "than 3.0 is ', F6.4)

CALL UMACH (2, NOUT)

END

Output

The probability that chi-squared with 2 df is Iless than 0.15 is 0.0723
The probability that chi-squared with 2 df is greater than 3.0 is 0.2231
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CHIIN

This function evaluates the inverse of the chi-squared cumulative distribution function.

Function Return Value

CHIIN — Function value. (Output)
The probability that a chi-squared random variable takes a value less than or equal to CHI | Nis P.

Required Arguments

P — Probability for which the inverse of the chi-squared distribution function is to be evaluated. (Input)
P must be in the open interval (0.0, 1.0).

DF — Number of degrees of freedom of the chi-squared distribution. (Input)
DF must be greater than or equal to 0.5.

FORTRAN 90 Interface

Generic: CHI | N(P, DF)
Specific: The specific interface names are S_CHI | Nand D_CHI I N

FORTRAN 77 Interface

Single: CHI | N(P, DF)
Double: The double precision name is DCHI | N.
Description

Function CHI | Nevaluates the inverse distribution function of a chi-squared random variable with DF degrees of
freedom, that is, with P = P and v= DF, it determines x (equal to CHI | N(P, DF)), such that

p= 1 re—z/z P2
2Y2r(v/2) Jo

where I'(+) is the gamma function. The probability that the random variable takes a value less than or equal to x is
P.
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For v< 40, CHI | Nuses bisection (if v < 2 or P> 0.98) or regula falsi to find the point at which the chi-squared
distribution function is equal to P. The distribution function is evaluated using routine CHI DF.

For 40 < v< 100, a modified Wilson-Hilferty approximation (Abramowitz and Stegun 1964, equation 26.4.18) to
the normal distribution is used, and routine ANORI Nis used to evaluate the inverse of the normal distribution
function. For v = 100, the ordinary Wilson-Hilferty approximation (Abramowitz and Stegun 1964, equation
26.4.17) is used.

Comments
Informational error
Type Code Description
4 1 Over 100 iterations have occurred without convergence. Convergence is
assumed.
Example

In this example, we find the 99-th percentage points of a chi-squared random variable with 2 degrees of freedom
and of one with 64 degrees of freedom.

USE UMACH | NT
USE CHI I N_I NT
IMPLICI T ~ NONE
INTEGER  NOUT

REAL DF, P, X
!

CALL UMACH (2, NOUT)

P = 0.99

DF = 2.0

X = CHI I N(P, DF)

VRI TE ( NOUT, 99998) X
99998 FORMAT (' The 99-th percentage point of chi-squared with 2 df ' &

, "is ', F7.3)
DF = 64.0
X = CH I N(P, DF)

VWRI TE (N(lJT 99999) X
99999 FORVAT ( The 99-th percentage point of chi-squared with 64 df ' &
, 'is ', F7.3)
END

Output

The 99-th percentage point of chi-squared with 2 df is
The 99-th percentage point of chi-squared with 64 df is 93.217
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CHIPR

This function evaluates the chi-squared probability density function.

Function Return Value

CHIPR — Function value, the value of the probability density function. (Output)

Required Arguments
X — Argument for which the chi-squared probability density function is to be evaluated. (Input)

DF — Number of degrees of freedom of the chi-squared distribution. (Input)

FORTRAN 90 Interface

Generic: CHI PR (X, DF)
Spedcific: The specific interface names are S_CHI PRand D_CHI PR

FORTRAN 77 Interface

Single: CHI PR (X, DF)
Double: The double precision name is DCHI PR
Description

The function CHI PR evaluates the chi-squared probability density function. The chi-squared distribution is a spe-
cial case of the gamma distribution and is defined as

f(x|v> = F<x|v/2,2> = m(x)m_le_g, xv>0

Example

In this example, we evaluate the probability function at X=3.0, DF =5.0.

USE UMACH | NT
USE CHI PRI NT
IMPLI CI T NONE
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| NTEGER NOUT
REAL X, DF, PR
CALL UMACH(2, NOUT)
X = 3.0
DF = 5.0
PR = CH PR(X, DF)
WRI TE (NOUT, 99999) X, DF, PR
99999 FORMAT (' CHIPR(', F4.2, ', ', F4.2, ') ="', F6.4)
END

Output

CH PR(3.00, 5.00) = 0.1542
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CSNDF

This function evaluates the noncentral chi-squared cumulative distribution function.

Function Return Value

CSNDF — Function value, the probability that a noncentral chi-squared random variable takes a value less
than or equal to CHSQ (Output)

Required Arguments

CHSQ — Argument for which the noncentral chi-squared cumulative distribution function is to be evalu-

ated. (Input)

DF —Number of degrees of freedom of the noncentral chi-squared cumulative distribution. (Input)
DF must be positive and less than or equal to 200,000.

ALAM — The noncentrality parameter. (Input)
ALAMmust be nonnegative, and ALAM+ DF must be less than or equal to 200,000.

FORTRAN 90 Interface

Generic: CSNDF (CHSQ DF, ALAM)
Specific: The specific interface names are S_CSNDF and D_CSNDF.

FORTRAN 77 Interface

Single: CSNDF (CHSQ DF, ALAM
Double: The double precision name is DCSNDF.
Description

Function CSNDF evaluates the cumulative distribution function of a noncentral chi-squared random variable with
DF degrees of freedom and noncentrality parameter ALAM that is, with v=DF, A= ALAM and x = CHSQ
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X
© =2 i +20)/2—1 —
A2 (v+20) 12
F(x|v,/1)=§ G ¢

i=0

il . 2(v+2i)/2r(—V§2" )

where I(-) is the gamma function. This is a series of central chi-squared distribution functions with Poisson
weights. The value of the distribution function at the point x is the probability that the random variable takes a
value less than or equal to x.

The noncentral chi-squared random variable can be defined by the distribution function above, or alternatively
and equivalently, as the sum of squares of independent normal random variables. If ¥; have independent normal

distributions with means y; and variances equal to one and

n
-3
i=1

then X has a noncentral chi-squared distribution with n degrees of freedom and noncentrality parameter equal to

n

2

2
i=1

With a noncentrality parameter of zero, the noncentral chi-squared distribution is the same as the chi-squared
distribution.

Function CSNDF determines the point at which the Poisson weight is greatest, and then sums forward and back-
ward from that point, terminating when the additional terms are sufficiently small or when a maximum of 1000
terms have been accumulated. The recurrence relation 26.4.8 of Abramowitz and Stegun (1964) is used to speed
the evaluation of the central chi-squared distribution functions.
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Figure 26, Noncentral Chi-squared Distribution Function

Example

In this example, CSNDF is used to compute the probability that a random variable that follows the noncentral
chi-squared distribution with noncentrality parameter of 1 and with 2 degrees of freedom is less than or equal to

8.642.

USE UMACH | NT
USE CSNDF_| NT
IMPLICIT ~— NONE
INTEGER  NOUT

REAL ALAM CHSQ DF, P
!

CALL UMACH (2, NOUT)

DF =20

ALAM = 1.0

CHSQ = 8.

642
P CSNDF( CHSQ, DF, ALAM)
WRI TE ( NOUT, 99999) P

99999 FORMAT (' The probability that a noncentral chi-squared random, &

/[, ' variable with 2 df and noncentrality 1.0 is |ess',
/, ' than 8.642 is ', F5.3)
END
Output
The probability that a noncentral chi-squared random
variable with 2 df and noncentrality 1.0 is |ess
than 8.642 is 0.950
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CSNIN

This function evaluates the inverse of the noncentral chi-squared cumulative function.

Function Return Value

CSNIN — Function value. (Output)
The probability that a noncentral chi-squared random variable takes a value less than or equal to

CSNI Nis P.

Required Arguments

P — Probability for which the inverse of the noncentral chi-squared cumulative distribution function is to

be evaluated. (Input)
P must be in the open interval (0.0, 1.0).

DF — Number of degrees of freedom of the noncentral chi-squared distribution. (Input)
DF must be greater than or equal to 0.5 and less than or equal to 200,000.

ALAM — The noncentrality parameter. (Input)
ALAMmust be nonnegative, and ALAM+ DF must be less than or equal to 200,000.

FORTRAN 90 Interface

Generic: CSNI N(P, DF, ALAM
Specific: The specific interface names are S_CSNI Nand D_CSNI N.

FORTRAN 77 Interface

Single: CSNI N(P, DF, ALAM
Double: The double precision name is DCSNI N.
Description

Function CSNI N evaluates the inverse distribution function of a noncentral chi-squared random variable with DF
degrees of freedom and noncentrality parameter ALAM that is, with P = P, v= DF, and A= ALAM it determines
Co(=CSNI N( P, DF, ALAM ), such that
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C

0
0 e_/l/z(ﬂ/ 2)i x(v+2l')/2—le—x/2
P=2.
=0

: . —dx
| +21)/2 2
1! ) 2(V i) F(VE l)

where [(-) is the gamma function. The probability that the random variable takes a value less than or equal to ¢g

isP.

Function CSNI N uses bisection and maodified regula falsi to invert the distribution function, which is evaluated
using routine CSNDF. See CSNDF for an alternative definition of the noncentral chi-squared random variable in
terms of normal random variables.

Comments
Informational error
Type Code Description
4 1 Over 100 iterations have occurred without convergence. Convergence is
assumed.
Example

In this example, we find the 95-th percentage point for a noncentral chi-squared random variable with 2 degrees
of freedom and noncentrality parameter 1.

99999

Output

The 0.

USE CSNI N_I NT
USE UMACH_| NT
IMPLICI T ~ NONE
INTEGER  NOUT

REAL ALAM CHSQ DF, P
CALL UMACH (2, NOUT)

DF =20

ALAM = 1.0

P =0.95

CHSQ = CSNI N( P, DF, ALAM)
WRI TE (NOUT, 99999) CHSQ

FORMAT (' The 0.05 noncentral chi-squared critical value is ', &
F6.3, '.'

END

05 noncentral chi-squared critical value is 8.642.
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CSNPR

This function evaluates the noncentral chi-squared probability density function.

Function Return Value

CSNPR — Function value, the value of the probability density function. (Output)

Required Arguments

X — Argument for which the noncentral chi-squared probability density function is to be evaluated.

(Input)
X must be non-negative.

DF — Number of degrees of freedom of the noncentral chi-squared distribution. (Input)
DF must be positive.

LAMBDA — Noncentrality parameter. (Input)
LAMBDA must be non-negative.

FORTRAN 90 Interface

Generic: CSNPR (X, DF, LANMBDA)
Specific: The specific interface names are S_CSNPRand D_CSNPR
Description

The noncentral chi-squared distribution is a generalization of the chi-squared distribution. If {X;} are k indepen-

dent, normally distributed random variables with means ; and variances oy, then the random variable:

=35
2\
i=1
is distributed according to the noncentral chi-squared distribution. The noncentral chi-squared distribution has

two parameters: k which specifies the number of degrees of freedom (i.e. the number of X;), and A which is

related to the mean of the random variables X; by:
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A=

Ij

(%)

The noncentral chi-squared distribution is equivalent to a (central) chi-squared distribution with & + 27 degrees
of freedom, where j is the value of a Poisson distributed random variable with parameter A/2. Thus, the probabil-
ity density function is given by:

k
=1

0

—A2 i
e "7(1/2) :
F(xkn) = ZTf(x,kJr 2i)
i=0
where the (central) chi-squared PDF f(x, k) is given by:

( x/2 >k/2 efx/z
f(x,k) = W for x>0, else 0

where I(-) is the gamma function. The above representation of F(x, k, A) can be shown to be equivalent to the
representation:

—(A+x)/2 k/2 oo
2
F(x,k,i) _e )gx/ ) Z¢i
i=0

_ (x/4)
% i (k/2+10)

Function CSNPR ( X, DF, LAMBDA) evaluates the probability density function of a noncentral chi-squared ran-
dom variable with DF degrees of freedom and noncentrality parameter LAVMBDA, corresponding to k = DF,
A=LAMBDA and x = X

Function CSNDF ( X, DF, LAMBDA) evaluates the cumulative distribution function incorporating the above prob-
ability density function.

With a noncentrality parameter of zero, the noncentral chi-squared distribution is the same as the central
chi-squared distribution.

Example

This example calculates the noncentral chi-squared distribution for a distribution with 100 degrees of freedom
and noncentrality parameter A = 40.

USE UMACH_| NT
USE CSNPR_| NT
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I MPLI CI T NONE

I NTEGER :: NOUT, |

REAL  :: X(6)=(/ 0.0, 8.0, 40.0, 136.0, 280.0, 400.0 /)

REAL  :: LAVBDA=40.0, DF=100.0, PDFV

CALL UMACH (2, NOUT)

WRI TE (NOUT,' (//"DF: ", F4.0, " LAMBDA: ", F4.0 //'I] &
Cor X PDF(X)")') DF, LAVBDA

DOI =1, 6

PDFV = CSNPR(X(1), DF, LAVBDA)

WRI TE (NOUT, ' (1X, F5.0, 2X, E12.5)') X(1), PDFV
END DO
END

Output

DF: 100. LAMBDA: 40.

X

0.

8.
40.
136.
280.
400.

PDF( X)
. 00000E+00
. 00000E+00
. 34621E- 13
. 21092E- 01
. 40027E- 09
. 11250E- 21

[clolololole]
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EXPDF

This function evaluates the exponential cumulative distribution function.

Function Return Value

EXPDF — Function value, the probability that an exponential random variable takes a value less than or

equal to X. (Output)

Required Arguments

X — Argument for which the exponential cumulative distribution function is to be evaluated. (Input)

B — Scale parameter of the exponential distribution function. (Input)

FORTRAN 90 Interface

Generic: EXPDF (X, B)
Specific: The specific interface names are S_EXPDF and D_EXPDF.

FORTRAN 77 Interface

Single: EXPDF (X B)
Double: The double precision name is DEXPDF.
Description

The function EXPDF evaluates the exponential cumulative distribution function (CDF), defined:

S

F(xlb) = IO fupydi=1-e
where

S

Sfalb) = 3e

is the exponential probability density function (PDF).
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Example
In this example, we evaluate the probability function at X=2.0, B=1.0.

USE UMACH | NT

USE EXPDF_I NT

I MPLI CI T NONE

| NTEGER NOUT

REAL X, B, PR

CALL UMACH(2, NOUT)

X =20

B=1.0

PR = EXPDF(X, B)

WRI TE (NOUT, 99999) X, B, PR
99999 FORMAT (' EXPDF(', F4.2, ', ', F4.2, ') ="', F6.4)

END

Output

EXPDF(2.00, 1.00) = 0.8647
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EXPIN

This function evaluates the inverse of the exponential cumulative distribution function.

Function Return Value

EXPIN — Function value, the value of the inverse of the cumulative distribution function. (Output)

Required Arguments
P — Probability for which the inverse of the exponential distribution function is to be evaluated. (Input)

B — Scale parameter of the exponential distribution function. (Input)

FORTRAN 90 Interface

Generic: EXPI N(P, B)
Specific: The specific interface names are S_EXPI Nand D_EXPI N

FORTRAN 77 Interface

Single: EXPI N(P, B)
Double: The double precision name is DEXPI N.
Description

The function EXPI Nevaluates the inverse distribution function of an exponential random variable with scale
parameter b = B.

Example
In this example, we evaluate the inverse probability function at P=0.8647, B=1.0.

USE UMACH I NT
USE EXPI N_I NT
I MPLI CI T NONE
| NTEGER NOUT
REAL X, B, P
CALL UMACH(2, NOUT)
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P = 0.8647
B=10
X = EXPIN(P, B)
VR TE (NOUT, 99999) P, B, X
99999 FORMAT (' EXPIN(', F6.4, ', ', FA.2, ') ="', F6.4)
END
Output

EXPI N(0. 8647, 1.00) = 2.0003
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EXPPR

This function evaluates the exponential probability density function.

Function Return Value

EXPPR — Function value, the value of the probability density function. (Output)

Required Arguments
X — Argument for which the exponential probability density function is to be evaluated. (Input)

B — Scale parameter of the exponential probability density function. (Input)

FORTRAN 90 Interface

Generic: EXPPR (X B)
Specific: The specific interface names are S_EXPPRand D_EXPPR

FORTRAN 77 Interface

Single: EXPPR (X, B)
Double: The double precision name is DEXPPR
Description

The function EXPPR evaluates the exponential probability density function. The exponential distribution is a spe-
cial case of the gamma distribution and is defined as

-x
f(x|b)=F(x| 1,b>=%eb, x,b>0

This relationship is used in the computation off(x|b>.
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Example
In this example, we evaluate the probability function at X=2.0, B=1.0.

USE UMACH | NT

USE EXPPR_| NT

IMPLICI T NONE

| NTEGER NOUT

REAL X, B, PR

CALL UMACH(2, NOUT)

X =20

B=1.0

PR = EXPPR(X, B)

WRI TE (NOUT, 99999) X, B, PR
99999 FORMAT (' EXPPR(', F4.2, ', ', F4.2, ') ="', F6.4)

END

Output

EXPPR(2.00, 1.00) = 0.1353
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EXVDF

This function evaluates the extreme value cumulative distribution function.

Function Return Value

EXVDF — Function value, the probability that an extreme value random variable takes a value less than or
equal to X. (Output)

Required Arguments
X — Argument for which the extreme value cumulative distribution function is to be evaluated. (Input)
AMU — Location parameter of the extreme value probability distribution function. (Input)

BETA — Scale parameter of the extreme value probability distribution function. (Input)

FORTRAN 90 Interface

Generic: EXVDF (X, AMUJ, BETA)
Specific: The specific interface names are S_EXVDF and D_EXVDF.

FORTRAN 77 Interface

Single: EXVDF (X, AMJ BETA)
Double: The double precision name is DEXVDF.
Description

The function EXVDF evaluates the extreme value cumulative distribution function, defined as

ﬂ
;
F(x|wp)=1-¢°

The extreme value distribution is also known as the Gumbel minimum distribution.
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Example
In this example, we evaluate the probability function at X=1.0, AMJ= 0.0, BETA=1.0.

USE UMACH | NT

USE EXVDF_| NT

I MPLI O T NONE

| NTEGER NOUT

REAL X, AMJ, B, PR
CALL UMACH(2, NOUT)

X=10
AMJ = 0.0
B=1.0

PR = EXVDF(X, AMJ, B)
WRI TE (NOUT, 99999) X, AWMU, B, PR
99999 FORMAT (' EXVDF(', F6.2, ', ', F4.2,
END

"' FA.2, ') =, F6.4)

Output

EXVDF( 1.00, 0.00, 1.00) = 0.9340
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EXVIN

This function evaluates the inverse of the extreme value cumulative distribution function.

Function Return Value

EXVIN — Function value, the value of the inverse of the extreme value cumulative distribution function.
(Output)

Required Arguments

P — Probability for which the inverse of the extreme value distribution function is to be evaluated. (Input)
AMU — Location parameter of the extreme value probability function. (Input)

BETA — Scale parameter of the extreme value probability function. (Input)

FORTRAN 90 Interface

Generic: EXVI N(P, AMJ, BETA)
Specific: The specific interface names are S_EXVI Nand D_EXVI N

FORTRAN 77 Interface

Single: EXVI N(P, AMJ BETA)
Double: The double precision name is DEXVI N
Description

The function EXVI N evaluates the inverse distribution function of an extreme value random variable with loca-
tion parameter AMJ and scale parameter BETA.

Example

In this example, we evaluate the inverse probability function at P=0.934, AMJ= 1.0, BETA=1.0

USE UMACH | NT
USE EXVI N_I NT
I MPLI CI T NONE
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| NTEGER NOUT
REAL X, AMJ, B, PR
CALL UMACH(2, NOUT)

PR = . 934
AMJ = 0.0
B=10

X = EXVIN(PR, AMJ, B)
WRI TE (NOUT, 99999) PR, AMJ, B, X
99999 FORMAT (* EXVIN(', F6.3, ', ', F4.2, ', ', F4.2, ') ="', F6.4)
END
Output

EXVI N( 0.934, 0.00, 1.00) = 0.9999
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EXVPR

This function evaluates the extreme value probability density function.

Function Return Value

EXVPR — Function value, the value of the probability density function. (Output)

Required Arguments
X — Argument for which the extreme value probability density function is to be evaluated. (Input)
AMU — Location parameter of the extreme value probability density function. (Input)

BETA — Scale parameter of the extreme value probability density function. (Input)

FORTRAN 90 Interface

Generic: EXVPR (X, AMUJ BETA)
Specific: The specific interface names are S_EXVPRand D_EXVPR

FORTRAN 77 Interface

Single: EXVPR (X, AMJ BETA)
Double: The double precision name is DEXVPR
Description

The function EXVPR evaluates the extreme value probability density function, defined as

po X
f(xlwp)=p"e’ ¢’ —w<x, yu<+0, >0

The extreme value distribution is also known as the Gumbel minimum distribution.

Example

In this example, we evaluate the extreme value probability density function at X= 2.0, AMJ= 0.0, BETA=1.0.
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USE UMACH_| NT
USE EXVPR_| NT
I MPLI O T NONE
| NTEGER NOUT
REAL X, AMJ, B, PR
CALL UMACH(2, NOUT)

X=-2.0
AMJ = 0.0
B=10

PR = EXVPR(X, AMJ, B)
WRI TE (NOUT, 99999) X, AMJ, B, PR

99999 FORMAT (' EXVPR(', F6.2, ', ', F4.2, ', ', F4.2, ') ="', F6.4)
END

Output

EXVPR( -2.00, 0.00, 1.00) = 0.1182
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FDF

This function evaluates the F cumulative distribution function.

Function Return Value

FDF — Function value, the probability that an F random variable takes a value less than or equal to the
input F. (Output)

Required Arguments
F — Argument for which the £ cumulative distribution function is to be evaluated. (Input)

DFN — Numerator degrees of freedom. (Input)
DFN must be positive.

DFD — Denominator degrees of freedom. (Input)
DFD must be positive.

Optional Arguments

COMPLEMENT — Logical. If TRUE,, the complement of the £ cumulative distribution function is evalu-
ated. If .[FALSE,, the F cumulative distribution function is evaluated. (Input)
See the Description section for further details on the use of COMPLEMENT.
Default: COMPLEMENT = FALSE..

FORTRAN 90 Interface

Generic: FDF (F, DFN, DFD[, ...])
Specific: The specific interface names are S_FDF and D_FDF.

FORTRAN 77 Interface

Single: FDF (F, DFN, DFD)
Double: The double precision name is DFDF.
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Description

Function FDF evaluates the distribution function of a Snedecor’s F random variable with DFN numerator degrees
of freedom and DFD denominator degrees of freedom. The function is evaluated by making a transformation to a
beta random variable and then using the routine BETDF. If X is an F variate with v; and v, degrees of freedom

and Y= vX/(v», + »X), then Yis a beta variate with parameters p = v4/2 and q = v,/2. The function FDF also uses

a relationship between F random variables that can be expressed as follows.
FDF(X, DFN, DFD) = 1.0 - FDF(1.0/ X, DFD, DFN)

If COMPLEMENT =. TRUE. , the value of FDF at the point xis 1 - p, where 1 - p is the probability that the ran-
dom variable takes a value greater than x. In those situations where the desired end resultis 1 - p, the user can
achieve greater accuracy in the right tail region by using the result returned by FDF with the optional argument
COMPLEMENT set to . TRUE. rather than by using 1 - p where p is the result returned by FDF with
COVPLEMENT set to . FALSE. .
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Figure 27, F Distribution Function
Comments
Informational error
Type Code Description
1 3 Since the input argument F is not positive, the distribution function is
zero at F.
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Example

In this example, we find the probability that an F random variable with one numerator and one denominator
degree of freedom is greater than 648.

USE UMACH | NT
USE FDF_| NT
IMPLICI T NONE
| NTEGER NOUT
REAL DFD, DFN, F, P
CALL UMACH (2, NOUT)
F 648. 0
DFN
DFD = 1.0
P FDF( F, DFN, DFD, COVPLEMENT=. TRUE. )
VRl TE ( NOUT, 99999) P
99999 FORMAT (' The probability that an F(1,1) variate is greater ', &
"than 648 is ', F6.4)

1.0

END

Output

The probability that an F(1, 1) variate is greater than 648 is 0.0250
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FIN

This function evaluates the inverse of the F cumulative distribution function.

Function Return Value

FIN — Function value. (Output)
The probability that an F random variable takes a value less than or equal to FI Nis P.

Required Arguments

P — Probability for which the inverse of the F distribution function is to be evaluated. (Input)
P must be in the open interval (0.0, 1.0).

DFN — Numerator degrees of freedom. (Input)
DFN must be positive.

DFD — Denominator degrees of freedom. (Input)
DFD must be positive.

FORTRAN 90 Interface

Generic: FI N(P, DFN DFD)
Specific: The specific interface names are S_FDF and D_FDF.

FORTRAN 77 Interface

Single: FI N(P, DFN DFD)
Double: The double precision name is DFDF.
Description

Function FI N evaluates the inverse distribution function of a Snedecor’s F random variable with DFN numerator
degrees of freedom and DFD denominator degrees of freedom. The function is evaluated by making a transfor-
mation to a beta random variable and then using the routine BETI N. If X is an F variate with vy and v, degrees of
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freedom and Y = viX/(», + v;X), then Yis a beta variate with parameters p = v4/2 and g = /2. If P < 0.5, FI Nuses
this relationship directly, otherwise, it also uses a relationship between f random variables that can be expressed
as follows, using routine FDF, which is the £ cumulative distribution function:

FDF(F,DFN DFD) = 1.0- FDF(1. 0/ F, DFD DFN).

Comments
Informational error
Type Code Description
4 4 FI Nis set to machine infinity since overflow would occur upon modifying

the inverse value for the F distribution with the result obtained from the
inverse beta distribution.

Example
In this example, we find the 99-th percentage point for an f random variable with 1 and 7 degrees of freedom.

USE UMACH_| NT
USE FI N_I NT

IMPLICIT  NONE
INTEGER  NOUT

REAL DFD, DFN, F, P
|

CALL UMACH (2, NOUT)

P =0.99

DFN = 1.0

DFD = 7.0

F = FIN(P, DFN, DFD)

WRI TE (NOUT, 99999) F

99999 FORMAT (' The F(1,7) 0.01 critical value is ', F6.3)
END

Output

The F(1, 7) 0.01 critical value is 12.246
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FPR

This function evaluates the F probability density function.

Function Return Value

FPR — Function value, the value of the probability density function. (Output)

Required Arguments
F — Argument for which the F probability density function is to be evaluated. (Input)

DFN — Numerator degrees of freedom. (Input)
DFN must be positive.

DFD — Denominator degrees of freedom. (Input)
DFD must be positive.

FORTRAN 90 Interface

Generic: FPR(F, DFN DFD)
Specific: The specific interface names are S_FPRand D_FDPR

FORTRAN 77 Interface

Single: FPR(F, DFN DFD)
Double: The double precision name is DFPR
Description

The function FPR evaluates the F probability density function, defined as
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f<x|v1,v2> = n(vl,v2>x 2

(252)
n(viva) = WC—;)Z x>0,v,>0, i=12

2 2

The parameters v; and v, correspond to the arguments DFNand DFD.

Example

In this example, we evaluate the probability function at F = 2.0, DFN=10.0, DFD=1.0.

99999

Output

FPR(

USE UMACH | NT

USE FPR | NT

IMPLI CI T NONE

| NTEGER NOUT

REAL F, DFN, DFD, PR
CALL UMACH(2, NOUT)

F=20
DFN = 10.0
DFD = 1.0

PR = FPR(F, DFN, DFD)
WRI TE (NOUT, 99999) F, DFN, DFD, PR

FORVAT (' FPR(', F6.2, ', ', F6.2, ', ', F6.2, ') ="', F6.4)
END
2.00, 10.00, 1.00) = 0.1052

394



Probability Distribution Functions and Inverses FNDF

FNDF

This function evaluates the noncentral F cumulative distribution function (CDF).

Function Return Value

FNDF — Probability that a random variable from an F distribution having noncentrality parameter
LAMBDA takes a value less than or equal to the input F. (Output)

Required Arguments

F — Argument for which the noncentral F cumulative distribution function is to be evaluated. (Input)
F must be non-negative.

DF1 — Number of numerator degrees of freedom of the noncentral F distribution. (Input)
DF1 must be positive.

DF2 — Number of denominator degrees of freedom of the noncentral F distribution. (Input)
DF2 must be positive.

LAMBDA — Noncentrality parameter. (Input)
LAMBDA must be non-negative.

FORTRAN 90 Interface

Generic: FNDF (F, DF1, DF2, LAMBDA)
Specific: The specific interface names are S_FNDF and D_FNDF.
Description

If X'is a noncentral chi-square random variable with noncentrality parameter A and v, degrees of freedom, and Y
is a chi-square random variable with v, degrees of freedom which is statistically independent of X, then

F= (X/v1>/<Y/v2>

is a noncentral F-distributed random variable whose CDF is given by
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CDF f Vl ,V2, ZCJ
j=0

where

. V V2

_ i A
w;=e2(/2) ) j1 = 35

Ix<a,b) = Bx(a,b> /B(a,b)

r . T(j+1-b
By(ab) = It"_l(l — 0l = x"z (,‘] )
0 J

:O<a+J>F(1—b>j!
x=v1f/<v2+v1f>

B(ab) =B (ab) = [(a)r(b)

F(a-lrb)
I(at1,b)=1.(ab)—T.(ab)

F(a + b)
I'(a+1)T(b)
and I(-) is the gamma function. The above series expansion for the noncentral F CDF was taken from Butler and
Paolella (1999) (see Paolella.pd]f), with the correction for the recursion relation given below:

Tx(a,b) =

xi(1-x)’ = T,(a- l,b)Wx

I(at+1,b)=1.(ab)-T.(ab)

extracted from the AS 63 algorithm for calculating the incomplete beta function as described by Majumder and
Bhattacharjee (1973).

The correspondence between the arguments of function FNDF( F, DF1, DF2, LAVMBDA) and the variables in the
above equations is as follows: vq = DF1, v, = DF2, A= LAMBDA and f=F.

For A= 0, the noncentral F distribution is the same as the F distribution.
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FNDF

Example

This example traces out a portion of a noncentral F distribution with parameters DF1 = 100, DF2 =10, and
LAMBDA = 10.

USE UMACH | NT
USE FNDF_T NT
I MPLI CI T NONE
| NTEGER NOUT,

REAL X, LAMBDA, DFl1,

DATA X0 / 0.0, .4, .8, 1.2,

CALL UMACH (2, NOUT)

DFL = 100.0

DF2 = 10.0

LAVBDA = 10.0

WRI TE (NOUT,' ("DF1: ", F4.0, "; DF2:
"o "LAMBDA: ", F4.0 // " X
DF1, DF2, LAVBDA

DOl =1, 8
X = X0(I)
CDFV = FNDF(X, DF1, DF2, LAVBDA)

Output

DF1:

SNNPEE@E2
cCwooON®OAO

100. ;

[eY=YeYoYoYoYoNo]

DF2, CDFV, X0(8)

1.6, 2.0, 2.8, 4.0/

", F4.0, &

COF(X) ") ") &

WRI TE (NOUT,' (1X, F5.1, 2X, E12.6)') X, CDFV
END DO
END

DF2: 10.;

CDF( X)

. 000000E+00
. 488790E- 02

202633E+00

. 521143E+00

733853E+00

. 850413E+00
. 947125E+00
. 985358E+00

LAMBDA:

10.
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FNIN

This function evaluates the inverse of the noncentral £ cumulative distribution function (CDF).

Function Return Value

FNIN — Function value, the value of the inverse of the cumulative distribution function evaluated at P.
The probability that a noncentral £ random variable takes a value less than or equal to FNI Nis P.
(Output)

Required Arguments

P — Probability for which the inverse of the noncentral £ cumulative distribution function is to be evalu-
ated. (Input)
P must be non-negative and less than 1.

DF1 — Number of numerator degrees of freedom of the noncentral F distribution. (Input)
DF1 must be positive.

DF2 — Number of denominator degrees of freedom of the noncentral F distribution. (Input)
DF2 must be positive.

LAMBDA — Noncentrality parameter. (Input)
LAMBDA must be non-negative.

FORTRAN 90 Interface

Generic: FNI N(P, DF1, DF2, LAVBDA)
Specific: The specific interface names are S_FNI Nand D_FNI N
Description

If X'is a noncentral chi-square random variable with noncentrality parameter A and v, degrees of freedom, and Y
is a chi-square random variable with v, degrees of freedom which is statistically independent of X, then

F= <X/v1>/<Y/v2>

is a noncentral F-distributed random variable whose CDF is given by
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p=CDF fvl,vz, ch
j=0

where:

. V V2

w =22y ) j1 = 2’1—jco

J i
I.(ab) =B.(ab)/B(ab)
B.(ab) = jt”_l(l — 0"t = x”i C IE;; (1 1__bb>)ﬂxf
0 J=0
x=vif/(vatvif)

[(a)r(b)

F(a-lrb)

B(a,b) =B1<a,b> =

L(a+1,b)=1.(ab)-T.(ab)

F(a+b)
IF'(a+1)r(b)

To(ab) = ¥ - x) = To(a—1,6) 4= Ly

and I'(+) is the gamma function, and p = CDF(f) is the probability that F < f. The correspondence between the argu-
ments of function FNI N( P,DF1,DF2,LAMBDA) and the variables in the above equations is as follows: vq = DF1,

v, =DF2, A\ = LAMBDA and p = P.
Function FNI N evaluates
f= CDF™! (p,vl,vl,/1>

Function FNI N uses bisection and modified regula falsi search algorithms to invert the distribution function

CDFA(), which is evaluated using function FNDF. For sufficiently small p, an accurate approximation of CDF' (p)
can be used which requires no such inverse search algorithms.
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Example

This example traces out a portion of an inverse noncentral £ distribution with parameters DF1 = 100, DF2 = 10,

and LAMBDA = 10.

USE UMACH | NT
USE FNDF_T NT
USE FNI N_I NT

I MPLI CI T NONE
| NTEGER NOUT, |

REAL F, LAMBDA, DF1, DF2, CDF, CDFI NV, FO
.4, 0, 2

DATA FO / 0.0,

.8, 1.2, 1.6, 2.0,

CALL UMACH (2, NOUT)

DF1 = 100.0
DF2 = 10.0
LAMBDA = 10.0

WRI TE (NOUT,' ("DF1: ", F4.0, "; DF2:
L / "

LANMBDA:

DF1, DF2, LAVBDA

DOl =1, 8
F = FO(l)

F4.0 /

CDF = FNDF(F, DF1, DF2, LAVBDA)

CDFI NV = FNI

WRI TE (NOUT, ' (1X, F5.1,

END DO
END

Output

DF1: 100.; DF2: 10.

P = CDF(F)

. 000000E+00
. 488790E- 02
202633E+00
. 521143E+00
733853E+00
. 850413E+00
. 947125E+00
. 985358E+00

SPNPEE@@I

oCmomN®AO
cooo0o000O

N(CDF, DF1, DF2, LAVBDA)
2(2X, E12.6))') F, CDF, CDFINV

LAVBDA:  10.
CDFI NV( P)

. 000000E+00
. 400000E+00

800000E+00

. 120000E+01

160000E+01

. 200000E+01
. 280000E+01
. 400000E+01

8)

, 4.0/

F4.0, &

F P = CDF(F)

COFINV(P)") ") &
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FNPR

This function evaluates the noncentral F probability density function.

Function Return Value

FNPR — Function value, the value of the probability density function. (Output)

Required Arguments

F — Argument for which the noncentral £ probability density function is to be evaluated. (Input)
F must be non-negative.

DF1 — Number of numerator degrees of freedom of the noncentral £ distribution. (Input)
DF1 must be positive.

DF2 — Number of denominator degrees of freedom of the noncentral F distribution. (Input)
DF2 must be positive.

LAMBDA — Noncentrality parameter. (Input)
LAMBDA must be non-negative.

FORTRAN 90 Interface

Generic: FNPR (F, DF1, DF2, LAMBDA)
Specific: The specific interface names are S_FNPRand D_FNPR
Description

If X'is a noncentral chi-square random variable with noncentrality parameter A and v, degrees of freedom, and Y
is a chi-square random variable with v, degrees of freedom which is statistically independent of X, then

F= (X/v1>/<Y/v2>

is a noncentral F-distributed random variable whose PDF is given by
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0

PDF (fy1.v2) = \PZch
k=0
where
eﬁi/2< v1f>v1/2< v, >\/2/2

\P:

vityy 2

f<v1f+v2>< yl“(vz/Z)

Rr(i2 k)

®, =

‘ or( 2 k)
B v f

R_2<v1f1+v2>

and I(+) is the gamma function, v = DF1, v, = DF2, A= LAMBDA, and f = F.
With a noncentrality parameter of zero, the noncentral F distribution is the same as the F distribution.
The efficiency of the calculation of the above series is enhanced by:

calculating each term @, in the series recursively in terms of either the term &, _; preceding it or the
term &, ; following it, and

initializing the sum with the largest series term and adding the subsequent terms in order of
decreasing magnitude.

Special cases:

ForR=/f=0:
I'(lvi+vy|/2)
PDF( f,vl,vz,/l> =Yo,=Y¥ [FZVI /22])
ForA=0:
PDF<f VisV2 /1> = <v1f)V1/2< V2 >V2/2r([ V1 +v2] /2)
e v+, Y2
f<v1f+v2)(l ’ F<v1/2>r(v2/2>

For f=0:
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_ vi/2-1 v,/2 0if v, > 2;
_ BT i T ([n*>]) —z/z-1 _

PDE(f> v v, 4) = T, 72) T(%,/2) e ifv =2
0 if v <2

Example

This example traces out a portion of a noncentral F distribution with parameters DF1 = 100, DF2 =10, and
LAMBDA = 10.

USE UMACH | NT
USE FNPR_| NT
I MPLICI T NONE

I NTEGER NOUT, |
REAL F, LAMBDA, DF1, DF2, PDFV, X0(8)
DATA X0 /0.0, 0.4, 0.8, 3.2, 5.6,8.8, 14.0, 18.0/

CALL UMACH (2, NOUT)

DF1 = 100.0

DF2 = 10.0

LAVBDA = 10.0

WRI TE (NOUT,' ("DF1: ", F4.0, "; DF2: ", F4.0, "; LAVBDA'// &
" F4.0//" F PDF(F)")') DF1, DF2, LAVBDA

DOl =1, 8
F = X0(1)

PDFV = FNPR(F, DF1, DF2, LAMBDA)
WRI TE (NOUT,' (1X, F5.1, 2X, E12.6)') F, PDFV
END DO
END

Output

DF1: 100.; DF2: 10.; LAVBDA: 10.

PDF( F)
. 000000E+00
. 974879E- 01
. 813115E+00
369482E- 01
. 283023E- 02
. 276607E- 03
. 219632E- 04
. 534831E- 05

Lo e @@
cComON®AO
coooo0o00O0

e
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GAMDF

This function evaluates the gamma cumulative distribution function.

Function Return Value

GAMDF — Function value, the probability that a gamma random variable takes a value less than or equal
to X (Output)

Required Arguments
X — Argument for which the gamma distribution function is to be evaluated. (Input)

A — The shape parameter of the gamma distribution. (Input)
This parameter must be positive.

FORTRAN 90 Interface

Generic: GAMDF (X, A
Specific: The specific interface names are S_GAMDF and D_GAMDF.

FORTRAN 77 Interface

Single: GAMDF (X, A
Double: The double precision name is DGANDF.
Description

Function GAMDF evaluates the distribution function, F, of a gamma random variable with shape parameter g; that

is,

F(x)= %ﬁe—tﬂ_ldt

where I(-) is the gamma function. (The gamma function is the integral from 0 to o of the same integrand as
above). The value of the distribution function at the point x is the probability that the random variable takes a
value less than or equal to x.
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The gamma distribution is often defined as a two-parameter distribution with a scale parameter b (which must be
positive), or even as a three-parameter distribution in which the third parameter c is a location parameter. In the
most general case, the probability density function over (¢, o) is

f (t ) = barl( a>e_<t_c>/b(x - C)ai1

If Tis such a random variable with parameters g, b, and ¢, the probability that T < t; can be obtained from GAVDF
by setting X = (ty - ¢)/b.

If X'is less than a or if Xis less than or equal to 1.0, GAMDF uses a series expansion. Otherwise, a continued frac-
tion expansion is used. (See Abramowitz and Stegun, 1964.)

1.0 /.———_T
- @
i — 0.5
1/ S| 1.0
Jd 5.0
0.8 7 ( 10.0
- | i
_— 7 | ;l
30.6 |' i
H 4/
=
= :
P |
o 0.4 —_
0.2
0.0 |.||'|'_.‘.i||||||||||||||
0.0 5.0 10.0 15.0 20.0
x
Figure 28, Gamma Distribution Function
Comments
Informational error
Type Code Description
1 2 Since the input argument Xis less than zero, the distribution function is
set to zero.
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Example

Suppose Xis a gamma random variable with a shape parameter of 4. (In this case, it has an Erlang distribution
since the shape parameter is an integer.) In this example, we find the probability that Xis less than 0.5 and the
probability that Xis between 0.5 and 1.0.

USE UMACH | NT

USE GAVDF_I NT

IMPLICIT = NONE
| NTEGER NOUT

REAL A P, X
!

CALL UMACH (2, NOUT)

A=40

X =0.5

P = GAMDF( X, A)

VRI TE (NOUT, 99998) P
99998 FORMAT (' The probability that Xis less than 0.5 is ', F6.4)
X =10
P = GAMDF(X A) - P
VRI TE (NOUT, 99999) P
99999 FORMAT (' The probability that X is between 0.5 and 1.0 is ', &
F6. 4)
END

Output

ess than 0.5 is 0.0018
etween 0.5 and 1.0 is 0.0172

The probability that X is
The probability that X is

o—
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GAMIN

This function evaluates the inverse of the gamma cumulative distribution function.

Function Return Value

GAMIN — Function value. (Output)
The probability that a gamma random variable takes a value less than or equal to GAM Nis P.

Required Arguments

P — Probability for which the inverse of the gamma cumulative distribution function is to be evaluated.
(Input)
P must be in the open interval (0.0, 1.0).

A — The shape parameter of the gamma distribution. (Input)
This parameter must be positive.

FORTRAN 90 Interface

Generic: GAM NP, A
Specific: The specific interface names are S_GAM Nand D_GAM N

FORTRAN 77 Interface

Single: GAM NP, A
Double: The double precision name is DGAM N.
Description

Function GAM N evaluates the inverse distribution function of a gamma random variable with shape parameter
a, that is, it determines x (= GAM N( P, A) ), such that

X
_ 1 J‘ — a-1
P F(a) o8 dt

where I'(+) is the gamma function. The probability that the random variable takes a value less than or equal to x is
P. See the documentation for routine GAMDF for further discussion of the gamma distribution.
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Function GAM N uses bisection and modified regula falsi to invert the distribution function, which is evaluated
using routine GANDF.

Comments
Informational error
Type Code Description
4 1 Over 100 iterations have occurred without convergence. Convergence is
assumed.
Example

In this example, we find the 95-th percentage point for a gamma random variable with shape parameter of 4.

USE UMACH | NT
USE GAM N_| NT
IMPLICIT — NONE
INTEGER  NOUT

REAL A P, X
!
CALL UMACH (2, NOUT)
A= 4.0
P =0.95

X = GAM N(P, A)

VRI TE (NOUT, 99999) X

99999 FORMAT (" The 0.05 ganmm(4) critical value is ', F6.3, &
L} i L} )

END

Output

The 0.05 ganma(4) critical value is 7.754.
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GAMPR

This function evaluates the gamma probability density function.

Function Return Value

GAMPR — Function value, the value of the probability density function. (Output)

Required Arguments
X — Argument for which the gamma probability density function is to be evaluated. (Input)

A — The shape parameter of the gamma distribution. (Input)
This parameter must be positive.

FORTRAN 90 Interface

Generic: GAMPR (X, A)
Specific: The specific interface names are S_GAMPRand D_GAMPR

FORTRAN 77 Interface

Single: GAMPR (X, A)
Double: The double precision name is DGAMPR
Description

The function GAMPR evaluates the gamma probability density function, defined as

F<x|a) = ﬁ(x)ale_x, x,a>0

Example

In this example, we evaluate the probability function at X=4.0, A=5.0.

USE UMACH_I NT
USE GAMPR_| NT
I MPLICI' T NONE
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X = 4.0
A =50
PR = GAMPR(X, A)
VR TE (NOUT, 99999) X, A, PR
99999 FORMAT (' GAMPR(', F4.2, ', ', F4.2, ') ="', F6.4)
END
Output

GAMPR(4. 00, 5.00) = 0.1954
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RALDF

This function evaluates the Rayleigh cumulative distribution function.

Function Return Value

RALDF — Function value, the probability that a Rayleigh random variable takes a value less than or equal
to X (Output)

Required Arguments
X — Argument for which the Rayleigh cumulative distribution function is to be evaluated. (Input)

ALPHA — Scale parameter of the Rayleigh cumulative distribution function. (Input)

FORTRAN 90 Interface

Generic: RALDF (X, ALPHA)
Specific: The specific interface names are S_RALDF and D_RALDF.

FORTRAN 77 Interface

Single: RALDF (X, ALPHA)
Double: The double precision name is DRALDF.
Description

The function RALDF evaluates the Rayleigh cumulative probability distribution function, which is a special case of
the Weibull cumulative probability distribution function, where the shape parameter GAMVA is 2.0

pal
2(12
F(x) =l-e
RALDF evaluates the Rayleigh cumulative probability distribution function using the relationship

RALDF( X, ALPHA) = WBLDF( X, SQRT( 2. 0) * ALPHA 2. 0) .
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Example

In this example, we evaluate the Rayleigh cumulative distribution function at X=0.25, ALPHA = 0.5.

USE UMACH | NT

USE RALDF_I NT

I MPLI CI T NONE

| NTEGER NOUT

REAL X, ALPHA, PR

CALL UMACH(2, NOUT)

X = 0.25

ALPHA = 0.5

PR = RALDF(X, ALPHA)

WRI TE (NOUT, 99999) X, ALPHA, PR
99999 FORMAT (' RALDF(', F4.2, ', ', F4.2, ') ="', F6.4)

END

Output

RALDF(0.25, 0.50) = 0.1175
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RALIN

This function evaluates the inverse of the Rayleigh cumulative distribution function.

Function Return Value

RALIN — Function value, the value of the inverse of the cumulative distribution function. (Output)

Required Arguments
P — Probability for which the inverse of the Rayleigh distribution function is to be evaluated. (Input)

ALPHA — Scale parameter of the Rayleigh cumulative distribution function. (Input)

FORTRAN 90 Interface

Generic: RALI N (P, ALPHA)
Specific: The specific interface names are S_RALI Nand D_RALI N

FORTRAN 77 Interface

Single: RALI N (P, ALPHA)
Double: The double precision name is DRALI N.
Description

The function RALI Nevaluates the inverse distribution function of a Rayleigh random variable with scale parame-
ter ALPHA.

Example
In this example, we evaluate the inverse probability function at P=0.1175, ALPHA=0.5.

USE UMACH I NT
USE RALI N_I NT
I MPLI CI T NONE
| NTEGER NOUT
REAL X, ALPHA, P

CALL UMACH(2, NOUT)
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P =0.1175
ALPHA = 0.5
X = RALIN(P, ALPHA)
WRI TE (NOUT, 99999) P, ALPHA, X
99999 FORMAT (' RALIN(', F6.4, ', ', F4.2, ') ="', F6.4)
END

Output

RALI N(0. 1175, 0.50) = 0.2500
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RALPR

This function evaluates the Rayleigh probability density function.

Function Return Value

RALPR — Function value, the value of the probability density function. (Output)

Required Arguments
X — Argument for which the Rayleigh probability density function is to be evaluated. (Input)

ALPHA — Scale parameter of the Rayleigh probability function. (Input)

FORTRAN 90 Interface

Generic: RALPR (X, ALPHA)
Specific: The specific interface names are S_RALPRand D_RALPR

FORTRAN 77 Interface

Single: RALPR (X, ALPHA)
Double: The double precision name is DRALPR
Description

The function RALPR evaluates the Rayleigh probability density function, which is a special case of the Weibull
probability density function where GAMVA is equal to 2.0, and is defined as

&)

f<x|a>=%e , x>0
a

Example
In this example, we evaluate the Rayleigh probability density function at X=0.25, ALPHA=0.5.

USE UMACH | NT
USE RALPR_| NT
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I MPLI O T NONE
| NTEGER NOUT
REAL X, ALPHA, PR
CALL UMACH(2, NOUT)
X = 0.25
ALPHA = 0.5
PR = RALPR(X, ALPHA)
WRI TE (NOUT, 99999) X, ALPHA, PR
99999 FORMAT (' RALPR(', F4.2, ', ', F4.2, ') ="', F6.4)
END

Output
RALPR(0.25, 0.50) = 0.8825
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TDF

This function evaluates the Student’s t cumulative distribution function.

Function Return Value

TDF — Function value, the probability that a Student's t random variable takes a value less than or equal
to the input T. (Output)

Required Arguments
T — Argument for which the Student's t distribution function is to be evaluated. (Input)

DF — Degrees of freedom. (Input)
DF must be greater than or equal to 1.0.

Optional Arguments

COMPLEMENT — Logical. If TRUE, the complement of the Student's t cumulative distribution function is
evaluated. If FALSE, the Student's t cumulative distribution function is evaluated. (Input)
See the Description section for further details on the use of COMPLEMENT.
Default: COMPLEMENT = FALSE..

FORTRAN 90 Interface

Generic; TDF(T,DF[,...])
Specific: The specific interface names are S_TDF and D_TDF.

FORTRAN 77 Interface

Single: TDF (T, DF)
Double: The double precision name is DTDF.
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Description

Function TDF evaluates the cumulative distribution function of a Student’s t random variable with DF degrees of
freedom. If the square of T is greater than or equal to DF, the relationship of a t to an F random variable (and sub-
sequently, to a beta random variable) is exploited, and routine BETDF is used. Otherwise, the method described
by Hill (1970) is used. Let v = DF. If v is not an integer, if v is greater than 19, or if v is greater than 200, a Cor-
nish-Fisher expansion is used to evaluate the distribution function. If v is less than 20 and ABS(T) is less than 2.0,
a trigonometric series (see Abramowitz and Stegun 1964, equations 26.7.3 and 26.7.4, with some rearrange-
ment) is used. For the remaining cases, a series given by Hill (1970) that converges well for large values of T is
used.

If COMPLEMENT = . TRUE, the value of TDF at the pointxis 1- p, where 1 - pis the probability that the random
variable takes a value greater than x. In those situations where the desired end result is 1- p, the user can achieve
greater accuracy in the right tail region by using the result returned by TDF with the optional argument
COVPLEMENT set to .TRUE. rather than by using 1 - p where p is the result returned by TDF with COVPLEMENT
setto .FALSE.

Figure 29, Student’s t Distribution Function

Example

In this example, we find the probability that a t random variable with 6 degrees of freedom is greater in absolute
value than 2.447. We use the fact that t is symmetric about 0.
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USE TDF_I NT
USE UMACH | NT
IMPLICI T ~ NONE
INTEGER  NOUT
REAL DF, P, T

CALL UMACH (2, NOUT)
T 2. 447
DF = 6.0
P 2. 0*TDF(- T, DF)
VWRI TE (NOUT, 99999) P
99999 FORMAT (' The probability that a t(6) variate is greater ', &
"than 2.447 in', /, ' absolute value is ', F6.4)

END

Output

The probability that a t(6) variate is greater than 2.447 in absolute value is 0.0500
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TIN

This function evaluates the inverse of the Student’s t cumulative distribution function.

Function Return Value

TIN — Function value. (Output)
The probability that a Student's t random variable takes a value less than or equal to Tl Nis P.

Required Arguments

P — Probability for which the inverse of the Student’s t cumulative distribution function is to be evalu-
ated. (Input)
P must be in the open interval (0.0, 1.0).

DF — Degrees of freedom. (Input)
DF must be greater than or equal to 1.0.

FORTRAN 90 Interface

Generic: TI NP, DF)
Specific: The specific interface names are S_TI Nand D_TI N,

FORTRAN 77 Interface

Single: TI NP, DF)
Double: The double precision name is DTI N.
Description

Function Tl Nevaluates the inverse distribution function of a Student’s t random variable with DF degrees of
freedom. Let v=DF. If vequals 1 or 2, the inverse can be obtained in closed form, if vis between 1 and 2, the
relationship of a t to a beta random variable is exploited and routine BETI Nis used to evaluate the inverse; oth-
erwise the algorithm of Hill (1970) is used. For small values of vgreater than 2, Hill's algorithm inverts an
integrated expansion in 1/(1 + t?/v) of the t density. For larger values, an asymptotic inverse Cornish-Fisher type
expansion about normal deviates is used.
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Comments
Informational error
Type Code Description
4 3 TI Nis set to machine infinity since overflow would occur upon modifying

the inverse value for the F distribution with the result obtained from the
inverse B distribution.

Example

In this example, we find the 0.05 critical value for a two-sided ¢ test with 6 degrees of freedom.

USE TIN_I NT
USE UMACH I NT
IMPLICIT ~ NONE
INTEGER  NOUT
REAL DF, P, T

CALL UMACH (2, NOUT)
P 0. 975
DF = 6.0
T TI N( P, DF)
WRI TE (NOUT, 99999) T
99999 FORMAT (' The two-sided t(6) 0.05 critical value is ', F6.3)
END

Output

The two-sided t(6) 0.05 critical value is 2.447
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TPR

This function evaluates the Student’s ¢ probability density function.

Function Return Value

TPR — Function value, the value of the probability density function. (Output)

Required Arguments
T — Argument for which the Student's t probability density function is to be evaluated. (Input)

DF — Degrees of freedom. (Input)
DF must be greater than or equal to 1.0.

FORTRAN 90 Interface

Generic: TPR(T, DF)
Specific: The specific interface names are S_TPRand D_TPR

FORTRAN 77 Interface

Single: TPR(T, DF)
Double: The double precision name is DTPR
Description

The function TPR evaluates the Student’s t probability density function, defined as

Fv) = (50505 (1 2V

—o0<ft<+oo, v>1

Where v = DF.

The normalizing factor uses the Beta function, BETA (see SChapter 4, “Gamma Functions and Related Functions”).
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Example
In this example, we evaluate the probability function at T = 1.5, DF = 10.0.

USE UMACH | NT

USE TPR_ | NT

IMPLICI T NONE

| NTEGER NOUT

REAL T, DF, PR

CALL UMACH(2, NOUT)

T=1.5

DF = 10.0

PR = TPR(T, DF)

WRI TE (NOUT, 99999) T, DF, PR
99999 FORMAT (' TPR(', F4.2, ', ', F6.2, ') ="', F6.4)

END

Output

TPR(1.50, 10.00) = 0.1274
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TNDF

This function evaluates the noncentral Student's t cumulative distribution function.

Function Return Value

TNDF — Function value, the probability that a noncentral Student's t random variable takes a value less
than or equal to T. (Output)

Required Arguments

T — Argument for which the noncentral Student's t cumulative distribution function is to be evaluated.
(Input)

IDF — Number of degrees of freedom of the noncentral Student's t cumulative distribution. (Input)
I DF must be positive.

DELTA — The noncentrality parameter. (Input)

FORTRAN 90 Interface

Generic: TNDF (T, | DF, DELTA)
Specific: The specific interface names are S_TNDF and D_TNDF.

FORTRAN 77 Interface

Single: TNDF (T, | DF, DELTA)
Double: The double precision name is DTNDF.
Description

Function TNDF evaluates the cumulative distribution function F of a noncentral t random variable with | DF
degrees of freedom and noncentrality parameter DELTA; that is, with v=1 DF, & = DELTA and 5 =T,
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M2 —5212

~oNTl(v/2)(v +x )

F(ty) = j (V+1)/2ZF((\/+ +1)/2)( )( 2)’/%1

where I(-) is the gamma function. The value of the distribution function at the point ¢ is the probability that the
random variable takes a value less than or equal to .

The noncentral t random variable can be defined by the distribution function above, or alternatively and equiva-
lently, as the ratio of a normal random variable and an independent chi-squared random variable. If w has a
normal distribution with mean & and variance equal to one, v has an independent chi-squared distribution with v
degrees of freedom, and

x=w/~Nulv
then x has a noncentral t distribution with degrees of freedom and noncentrality parameter d.

The distribution function of the noncentral  can also be expressed as a double integral involving a normal density
function (see, for example, Owen 1962, page 108). The function TNDF uses the method of Owen (1962, 1965),
which uses repeated integration by parts on that alternate expression for the distribution function.

10 7 5

0.8

0.6

TNDF(x 20,6)

'CI.'D LN B I | "; [T T T T T T T 7 T T T T TT
-4.0 0.0 4.0 8.0 120 160 200
x

Figure 30, Noncentral Student’s t Distribution Function

Comments

Informational error
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Type Code Description

4 2 An accurate result cannot be computed due to possible underflow for
the machine precision available. DELTA* SQRT( | DF/ (| DF+T**2)) must
be less than SQRT(- 1. 9*ALOE S) ), where S=SAMACH( 1) .

Example

Suppose Tis a noncentral t random variable with 6 degrees of freedom and noncentrality parameter 6. In this
example, we find the probability that Tis less than 12.0. (This can be checked using the table on page 111 of
Owen 1962, with n=0.866, which yields A= 1.664.)

99999

USE UVACH_| NT

USE TNDF_T NT

IMPLICI T NONE
INTEGER | DF, NOUT
REAL DELTA, P, T

CALL UMACH (2, NOUT)
| DF 6

DELTA = 6.0
T - 12.0
p = TNDF(T, | DF, DELTA)

VRI TE (NOUT, 99999) P
FORMAT (' The probability that Tis less than 12.0 is ', F6.4)
END

Output

The probability that T is less than 12.0 is 0.9501
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TNIN

This function evaluates the inverse of the noncentral Student's t cumulative distribution function.

Function Return Value

TNIN — Function value. (Output)

The probability that a noncentral Student's t random variable takes a value less than or equal to
TNI Nis P.

Required Arguments

P — Probability for which the inverse of the noncentral Student's t cumulative distribution function is to
be evaluated. (Input)
P must be in the open interval (0.0, 1.0).

IDF — Number of degrees of freedom of the noncentral Student's t cumulative distribution. (Input) | DF
must be positive.

DELTA — The noncentrality parameter. (Input)

FORTRAN 90 Interface

Generic: TNI N(P, | DF, DELTA)
Specific: The specific interface names are S_TNI Nand D_TNI N

FORTRAN 77 Interface

Single: TNI N(P, | DF, DELTA)
Double: The double precision name is DTNI N,
Description

Function TNI Nevaluates the inverse distribution function of a noncentral t random variable with | DF degrees of
freedom and noncentrality parameter DELTA; that is, with P =P, v=1 DF, and & = DELTA it determines t;

=TNIN(P, |DF, DELTA)), such that

427



Probability Distribution Functions and Inverses TNIN

¢ 2
:J'O VV/Zeé/Z

N . o\ 2x \in
I'((v+i+1)/2)G)(——=)"d
‘w\/EF(v/Z)(erxz)(VH)/ZZO: (v+i+1) )(Z!)(V+x2) A%

where I'(-) is the gamma function. The probability that the random variable takes a value less than or equal to fy is
P. See TNDF for an alternative definition in terms of normal and chi-squared random variables. The function

TNI N uses bisection and modified regula falsi to invert the distribution function, which is evaluated using routine
TNDF.

Comments
Informational error
Type Code Description
4 1 Over 100 iterations have occurred without convergence. Convergence is
assumed.
Example

In this example, we find the 95-th percentage point for a noncentral t random variable with 6 degrees of freedom
and noncentrality parameter 6.

USE TNI N_I NT

USE UMACH | NT

IMPLICIT — NONE
INTEGER | DF, NOUT
REAL DELTA, P, T

CALL UMACH (2, NOUT)
| DF 6

DELTA
P 0.95

T TNI N( P, | DF, DELTA)
WRI TE (NOUT, 99999) T

6.0

99999 FORVAT (' The 0.05 noncentral t critical value is ', F6.3, &
l.l)

END

Output

The 0.05 noncentral t critical value is 11.995.
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TNPR

This function evaluates the noncentral Student's t probability density function.

Function Return Value

TNPR — Function value, the value of the probability density function. (Output)

Required Arguments
T — Argument for which the noncentral Student's ¢ probability density function is to be evaluated. (Input)

DF — Number of degrees of freedom of the noncentral Student's t distribution. (Input)
DF must be positive.

DELTA — Noncentrality parameter. (Input)

FORTRAN 90 Interface

Generic: TNPR(T, DF, DELTA)
Specific: The specific interface names are S_TNPRand D_TNPR
Description

The noncentral Student's t distribution is a generalization of the Student's t distribution.

If wis a normally distributed random variable with unit variance and mean & and v is a chi-square random variable
with v degrees of freedom that is statistically independent of w, then

T=w/~Nulv

is a noncentral t-distributed random variable with v degrees of freedom and noncentrality parameter 9, that is,
with v=DF, and & = DELTA The probability density function for the noncentral t-distribution is:

2 o
VV/Ze 0°/2

(v+1)2 Z‘Di

Var (v/2)(v+7) pr

f(t,v,&) =

where
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_T((v+i+ 0y 2)[er](2r (v+2))?

i

®;
andt=T.

For & = 0, the PDF reduces to the (central) Student's t PDF;

r((v+1)/2)(1+(A/v) N
f(60) = : )x/vlyfr(v/z) )

and, for t = 0, the PDF becomes:

2
CT((v+1)/2)e"?
A N )

Example

This example calculates the noncentral Student's t PDF for a distribution with 2 degrees of freedom and noncen-
trality parameter & = 10.

USE TNPR | NT
USE UNMACH | NT
I MPLI CI T NONE

INTEGER :: NOUT, |
REAL . X(6)=(/ -.5, 1.5, 3.5, 7.5, 51.5, 99.5 /)
REAL .. DF, DELTA, PDFV

CALL UMACH (2, NOUT)
DF = 2.0
DELTA = 10.0

WRI TE (NOUT,' ("DF: ", F4.0, " DELTA ", F4.0 //' /] &
X PDF(X)")') DF, DELTA

DOl =1, 6

PDFV = TNPR(X(1), DF, DELTA)

WRI TE (NOUT,' (1X, F4.1, 2X, E12.5)') X(1), PDFV
END DO
END

Output

DF: 2. DELTA: 10.

X PDF( X)

. 16399E- 23
. 74417E- 09
. 28972E- 02
. 78853E- 01
. 14215E- 02
. 20290E- 03

CENOEE
oo
cooooo

O a1
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UNDF

This function evaluates the uniform cumulative distribution function.

Function Return Value

UNDF — Function value, the probability that a uniform random variable takes a value less than or equal
to X (Output)

Required Arguments
X — Argument for which the uniform cumulative distribution function is to be evaluated. (Input)
A — Location parameter of the uniform cumulative distribution function. (Input)

B — Value used to compute the scale parameter (B - A) of the uniform cumulative distribution function.
(Input)

FORTRAN 90 Interface

Generic: UNDF (X, A B)
Specific: The specific interface names are S_UNDF and D_UNDF.

FORTRAN 77 Interface

Single: UNDF (X, A B)
Double: The double precision name is DUNDF.
Description

The function UNDF evaluates the uniform cumulative distribution function with location parameter A and scale

parameter (B - A). The function definition is
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0, ifx<4
_ ) x—4 .
F(x|4,B) = {54, if A<x<B
1, if x>B

Example
In this example, we evaluate the probability function at X=0.65, A= 0.25, B=0.75.

USE UMACH_| NT

USE UNDF_INT

I MPLI CI T NONE

| NTEGER NOUT

REAL X, A B, PR
CALL UMACH(2, NOUT)

X = 0.65
A =0.25
B =0.75

PR = UNDF(X, A B)
WRI TE (NOUT, 99999) X, A B, PR

99999 FORMAT (' UNDF(', F4.2, ', ', F4.2, ', ', F4.2, ') ="', F6.4)
END

Output

UNDF( 0. 65, 0.25, 0.75) = 0.8000
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UNIN

This function evaluates the inverse of the uniform cumulative distribution function.

Function Return Value

UNIN — Function value, the value of the inverse of the cumulative distribution function. (Output)

Required Arguments

P — Probability for which the inverse of the uniform cumulative distribution function is to be evaluated.
(Input)

A — Location parameter of the uniform cumulative distribution function. (Input)

B — Value used to compute the scale parameter (B - A) of the uniform cumulative distribution function.
(Input)

FORTRAN 90 Interface

Generic: UNI N (P, A B)
Specific: The specific interface names are S_UNI Nand D_UNI N

FORTRAN 77 Interface

Single: UNI N(P, A B)
Double: The double precision name is DUNI N,
Description

The function UNI N evaluates the inverse distribution function of a uniform random variable with location param-

eter Aand scale parameter (B - A).

Example

In this example, we evaluate the inverse probability function at P=0.80, A= 0.25, B=0.75.
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USE UMACH_| NT

USE UNI N I

I MPLI CI T_NONE

| NTEGER NOUT

REAL X, A B, P

CALL UMACH(2, NOUT)
0

P=0.8
A =0.25
B=0.75
X = UNN(P, A B)
VR TE (NOUT, 99999) P, A, B, X

99999 FORMAT (' UNIN(', F4.2, ', ', F4.2, ', ', FA.2, ') ="', F6.4)

END

Output

UNIN(0. 80, 0.25, 0.75) = 0.6500
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UNPR

This function evaluates the uniform probability density function.

Function Return Value

UNPR — Function value, the value of the probability density function. (Output)

Required Arguments

X — Argument for which the uniform probability density function is to be evaluated. (Input)

A — Location parameter of the uniform probability function. (Input)

B — Value used to compute the scale parameter (B - A) of the uniform probability density function.

(Input)

FORTRAN 90 Interface

Generic: UNPR (X, A, B)
Specific: The specific interface names are S_UNPR and D_UNPR

FORTRAN 77 Interface

Single: UNPR (X A B)
Double: The double precision name is DUNPR
Description

The function UNPR evaluates the uniform probability density function with location parameter A and scale

parameter (B - A), defined
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1
-— forA<x<B
f(x4,B) = {B-4 SXs
( ) 0 otherwise

Example

In this example, we evaluate the uniform probability density function at X=0.65, A= 0.25,
B=0.75.

USE UMACH_| NT

USE UNPR_TNT

I MPLI G T_NONE

| NTEGER NOUT

REAL X, A B, PR
CALL UMACH(2, NOUT)

X = 0.65
A =0.25
B =0.75

PR = UNPR(X, A B)
WRI TE (NOUT, 99999) X, A B, PR

99999 FORMAT (' UNPR(', F4.2, ', ', F4.2, ', ', F4.2, ') ="', F6.4)
END

Output

UNPR(0. 65, 0.25, 0.75) = 2.0000
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WBLDF

This function evaluates the Weibull cumulative distribution function.

Function Return Value

WBLDF — Function value, the probability that a Weibull random variable takes a value less than or equal
to X (Output)

Required Arguments
X — Argument for which the Weibull cumulative distribution function is to be evaluated. (Input)
A — Scale parameter. (Input)

B — Shape parameter. (Input)

FORTRAN 90 Interface

Generic: VBLDF (X, A B)
Specific: The specific interface names are S_WBLDF and D_WBLDF.

FORTRAN 77 Interface

Single: VBLDF (X A B)
Double: The double precision name is DWBLDF.
Description

The function VBLDF evaluates the Weibull cumulative distribution function with scale parameter A and shape
parameter B, defined

F<x|a,b> =1 —e_<%>b

b
To deal with potential loss of precision for small values of(%) , the difference expression for p is re-written as
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and the right factor is accurately evaluated using EXPRL.

Example

In this example, we evaluate the Weibull cumulative distribution function at X=1.5, A=1.0,B=2.0.

USE UMACH | NT
USE WBLDF_| NT

I MPLI O T NONE

| NTEGER NOUT

REAL X, A B, PR
CALL UMACH(2, NOUT)

X=1.5
A=10
B=20

PR = WBLDF(X, A B)
WRI TE (NOUT, 99999) X, A, B, PR

99999 FORMAT (' WBLDF(', F4.2, ', ', F4.2, ', ', F4.2, ') ="', F6.4)
END

Output

WBLDF(1.50, 1.00, 2.00) = 0.8946
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WBLIN

This function evaluates the inverse of the Weibull cumulative distribution function.

Function Return Value

WBLIN — Function value, the value of the inverse of the Weibull cumulative distribution function.
(Output)

Required Arguments

P — Probability for which the inverse of the Weibull cumulative distribution function is to be evaluated.
(Input)

A — Scale parameter. (Input)

B — Shape parameter. (Input)

FORTRAN 90 Interface

Generic: VBLI N(P, A B)
Specific: The specific interface names are S_WBLI Nand D_WBLI N

FORTRAN 77 Interface

Single: VBLI N(P, A B)
Double: The double precision name is DWBLI N.
Description

The function VBLI N evaluates the inverse distribution function of a Weibull random variable with scale parame-
ter Aand shape parameter B.

Example

In this example, we evaluate the inverse probability function at P=0.8946, A= 1.0, B=2.0.
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USE UMACH | NT

USE WBLI N_I NT

I MPLI CI T NONE

| NTEGER NOUT

REAL X, A B, P

CALL UMACH(2, NOUT)

P = 0.8946

1.0

2.0

VBLIN(P, A B)
WRI TE (NOUT, 99999) P, A B, X

99999 FORMAT (' WBLIN(', F4.2, ', ', F4.2, ', ', F4.2, ') ="', F6.4)
END

X W >
T

Output
VBLI N(0. 8946, 1.00, 2.00) = 1.5000
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WBLPR

This function evaluates the Weibull probability density function.

Function Return Value

WBLPR — Function value, the value of the probability density function. (Output)

Required Arguments
X — Argument for which the Weibull probability density function is to be evaluated. (Input)
A — Scale parameter. (Input)

B — Shape parameter. (Input)

FORTRAN 90 Interface

Generic: VBLPR (X A B)
Specific: The specific interface names are S_ WBLPRand D_WVBLPR

FORTRAN 77 Interface

Single: VBLPR (X A B)
Double: The double precision name is DABLPR
Description

The function WBLPR evaluates the Weibull probability density function with scale parameter A and shape param-
eter B, defined

x\b
f(xla,b) = %(%)b_le_<a> , a,b>0

Example

In this example, we evaluate the Weibull probability density function at X=1.5, A=1.0, B=2.0.
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USE UMACH_| NT
USE WBLPR_| NT

I MPLI CI T NONE

| NTEGER NOUT

REAL X, A, B, PR
CALL UMACH(2, NOUT)

X=1.5
A=10
B=20

PR = WBLPR(X, A B)
WRI TE (NOUT, 99999) X, A, B, PR

99999 FORMAT (' WBLPR(', F4.2, ', ', F4.2, ', ', F4.2, ') ="', F6.4)
END

Output

VBLPR(1.50, 1.00, 2.00) = 0.3162
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GCDF

This function evaluates a general continuous cumulative distribution function given ordinates of the density.

Function Return Value

GCDF — Function value, the probability that a random variable whose density is given in F takes a value
less than or equal to X0. (Output)

Required Arguments

X0 —Point at which the cumulative distribution function is to be evaluated. (Input)

X — Array containing the abscissas or the endpoints. (Input)
IfI OPT =1 or 3, Xis of length 2. If | OPT =2 or 4, Xis of length M For | OPT =1 or 3, X(1) contains

the lower endpoint of the support of the distribution and X(2) is the upper endpoint. For | OPT =2
or 4, X contains, in strictly increasing order, the abscissas such that X(I ) corresponds to F(l ).

F — Vector of length Mcontaining the probability density ordinates corresponding to increasing abscis-

sas. (Input)
IfIlOPT=10r3,forl =1,2,..., MF( ) corresponds to X(1) + (I - 1)* (X(2)- X(1))/(M-1); other-

wise, F and X correspond one for one.

Optional Arguments

IOPT — Indicator of the method of interpolation. (Input)
Default: | OPT = 1.

I OPT  Interpolation Method

1 Linear interpolation with equally spaced abscissas.

2 Linear interpolation with possibly unequally spaced abscissas.
3 A cubic spline is fitted to equally spaced abscissas.
4

A cubic spline is fitted to possibly unequally spaced abscissas.
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M —Number of ordinates of the density supplied. (Input)
Mmust be greater than 1 for linear interpolation (I OPT =1 or 2) and greater than 3 if a curve is fitted
through the ordinates (I OPT =3 or 4).
Default: M= size (F,1).

FORTRAN 90 Interface

Generic: GCDF (X0, X, F[,...])
Specific: The specific interface names are S_GCDF and D_GCDF.

FORTRAN 77 Interface

Single: GCDF (X0, 1 OPT,M X F)
Double: The double precision name is DGCDF.
Description

Function GCDF evaluates a continuous distribution function, given ordinates of the probability density function. It
requires that the range of the distribution be specified in X. For distributions with infinite ranges, endpoints must
be chosen so that most of the probability content is included. The function GCDF first fits a curve to the points
given in X and F with either a piecewise linear interpolant or a C' cubic spline interpolant based on a method by
Akima (1970). Function GCDF then determines the area, A, under the curve. (If the distribution were of finite
range and if the fit were exact, this area would be 1.0.) Using the same fitted curve, GCDF next determines the
area up to the point xg (= X0). The value returned is the area up to xq divided by A Because of the scaling by A, it
is not assumed that the integral of the density defined by Xand Fis 1.0. For most distributions, it is likely that bet-
ter approximations to the distribution function are obtained when | OPT equals 3 or 4, that is, when a cubic
spline is used to approximate the function. It is also likely that better approximations can be obtained when the
abscissas are chosen more densely over regions where the density and its derivatives (when they exist) are vary-
ing greatly.

Comments

1. If I OPT = 3, automatic workspace usage is:

GCDF 6 * Munits, or
DGCDF 11 * Munits.

2. If 1 OPT = 4, automatic workspace usage is

GCDF 5* Munits, or
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DGCDF 9 * Munits.
3. Workspace may be explicitly provided, if desired, by the use of GADF/DGAADF. The reference is:

ADF(P, 1 OPT, M X F, VWK | VK)
The arguments in addition to those of GCDF are:

WK — Work vector of length 5* Mif | OPT =3, and of length 4 * Mif | OPT = 4.
IWK — Work vector of length M

Example

In this example, we evaluate the beta distribution function at the point 0.6. The probability density function of a
beta random variable with parameters p and g is

B F<P+Q) 1
U RO

(1-x7" foro<x<1

where I(-) is the gamma function. The density is equal to 0 outside the interval [0, 1]. We compute a constant
multiple (we can ignore the constant gamma functions) of the density at 300 equally spaced points and input this
information in X and F. Knowing that the probability density of this distribution is very peaked in the vicinity of
0.5, we could perhaps get a better fit by using unequally spaced abscissas, but we will keep it simple. Note that
this is the same example as one used in the description of routine BETDF. The result from BETDF would be
expected to be more accurate than that from GCDF since BETDF is designed specifically for this distribution.

USE UMACH | NT
USE GCDF_INT

IMPLICIT  NONE
INTEGER M
PARAMETER  ( M=300)

| NTEGER I, 1 OPT, NOUT

REAL F(M, H P, PINL, Q N1, X(2), X0, X
|

CALL UMACH (2, NOUT)

X0 =0.6

I1OPT = 3
! Initializations for a beta(12,12)
! di stribution.

PINL = 11.0

QNL = 11.0

X = 0.0

H = 1.0/ (M1.0)

X(1) = Xl

F(1) = 0.0

X =Xl + H

! Conput e ordi nates of the probability
! density function.
DO 10 =2, M- 1
F(1) = XI**PI NL*(1.0-XI)**Q N1
Xl =X + H
10 CONTI NUE
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X(2) = 1.0

F(M = 0.0

P GCDF(X0, X, F, |OPT=IOPT)
WRI TE (NOUT, 99999) P

99999 FORMAT (' The probability that X is less than 0.6 is
END

', F6.4)

Output

The probability that Xis less than 0.6 is 0.8364
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GCIN

Evaluates the inverse of a general continuous cumulative distribution function given ordinates of the density.

Required Arguments

P — Probability for which the inverse of the distribution function is to be evaluated. (Input)
P must be in the open interval (0.0, 1.0).

X — Array containing the abscissas or the endpoints. (Input)
If | OPT =1 or 3, Xis of length 2. If | OPT =2 or 4, Xis of length M For | OPT =1 or 3, X(1) contains

the lower endpoint of the support of the distribution and X(2) is the upper endpoint. For | OPT =2
or 4, X contains, in strictly increasing order, the abscissas such that X(I ) corresponds to F(l ).

F — Vector of length Mcontaining the probability density ordinates corresponding to increasing abscis-

sas. (Input)
f1OPT=10r3forl =1,2, ..., MF( ) corresponds to X(1) + (I - 1)* (X(2) - X(1))/(M- 1); other-

wise, F and X correspond one for one.

GCIN — Function value. (Output)
The probability that a random variable whose density is given in F takes a value less than or equal to

G&Cl Nis P.

Optional Arguments

I0PT — Indicator of the method of interpolation. (Input)
Default: | OPT = 1.

| OPT Interpolation Method

1 Linear interpolation with equally spaced abscissas.

2 Linear interpolation with possibly unequally spaced
abscissas.

A cubic spline is fitted to equally spaced abscissas.

4 A cubic spline is fitted to possibly unequally spaced
abscissas.
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M — Number of ordinates of the density supplied. (Input)
Mmust be greater than 1 for linear interpolation (I OPT =1 or 2) and greater than 3 if a curve is fitted
through the ordinates (I OPT =3 or 4).
Default: M= size (F,1).

FORTRAN 90 Interface

Generic: CALLGCIN (P, X F[,...]1)
Specific: The specific interface names are S_GCl Nand D_GCI N

FORTRAN 77 Interface

Single: CALL GCIN(P, I OPT,M X F)
Double: The double precision function name is DGCI N.
Description

Function GCl Nevaluates the inverse of a continuous distribution function, given ordinates of the probability den-
sity function. The range of the distribution must be specified in X. For distributions with infinite ranges, endpoints
must be chosen so that most of the probability content is included.

The function GCI Nfirst fits a curve to the points given in Xand F with either a piecewise linear interpolant or a ('
cubic spline interpolant based on a method by Akima (1970). Function GClI Nthen determines the area, A under
the curve. (If the distribution were of finite range and if the fit were exact, this area would be 1.0.) It next finds the
maximum abscissa up to which the area is less than AP and the minimum abscissa up to which the area is greater
than AP. The routine then interpolates for the point corresponding to AP. Because of the scaling by A, it is not
assumed that the integral of the density defined by Xand Fis 1.0.

For most distributions, it is likely that better approximations to the distribution function are obtained when | OPT
equals 3 or 4, that is, when a cubic spline is used to approximate the function. It is also likely that better approxi-
mations can be obtained when the abscissas are chosen more densely over regions where the density and its
derivatives (when they exist) are varying greatly.

Comments

Workspace may be explicitly provided, if desired, by the use of G31 NNDG3I N. The reference is

GIN(P, 1 OPT, M X F, VK | VK)
The arguments in addition to those of GCl Nare:

WK — Work vector of length 5* Mif | OPT =3, and of length 4 * Mif | OPT = 4.
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IWK — Work vector of length M

Example

In this example, we find the 90-th percentage point for a beta random variable with parameters 12 and 12. The
probability density function of a beta random variable with parameters p and g is

r(p+aq)

f(x) = prl(l —x)! foro<x<1

where I(+) is the gamma function. The density is equal to 0 outside the interval [0, 1]. With p = g, this is a symmet-
ric distribution. Knowing that the probability density of this distribution is very peaked in the vicinity of 0.5, we
could perhaps get a better fit by using unequally spaced abscissas, but we will keep it simple and use 300 equally
spaced points. Note that this is the same example that is used in the description of routine BETI N. The result
from BETI Nwould be expected to be more accurate than that from GCl Nsince BETI Nis designed specifically
for this distribution.

USE GCI N_I NT
USE UMVACH | NT
USE BETA I NT

IMPLICIT  NONE
INTEGER M
PARAMETER  ( M=300)

INTEGER |, 1OPT, NOUT
REAL C F(M, H P, PIN, PINL, QN, QNL, &
X(2), X0, X

CALL UMACH (2, NOUT)
= 0.9
=3

! Initializations for a beta(12,12)
! di stribution.

PIN = 12.0
QN =12.0
PINL = PIN- 1.0
QNL=QN- 1.0
C = 1.0/ BETA(PIN, Q N)
X = 0.0
H = 1.0/ (M1.0)
X(1) = X
F(1) = 0.0
X =Xl + H
! Conput e ordi nates of the probability
! density function.

DO 10 =2, M- 1

F(1) = CXI**PI NL*(1. 0- X )**Q N1

Xl =X +H

10 CONTI NUE
X(2) = 1.0
F(M =0.0
X0 = GNP, X F, |0PT=IOPT)
WRI TE (NOUT, 99999) X0
is

99999 FORMAT (' X is less than ', F6.4, ' with probability 0.9.")
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END

Output

X is less than 0.6304 with probability 0.9.
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GFNIN

This function evaluates the inverse of a general continuous cumulative distribution function given in a
subprogram.

Function Return Value

GFNIN — The inverse of the function F at the point P. (Output)
F(G-NI' N) is “close” to P.

Required Arguments

F — User-supplied FUNCTI ONto be inverted. F must be continuous and strictly monotone. The form is

F(X), where

X — The argument to the function. (Input)

F — The value of the function at X. (Qutput)

F must be declared EXTERNAL in the calling program.

P — The point at which the inverse of F is desired. (Input)

GUESS — An initial estimate of the inverse of F at P. (Input)

Optional Arguments

EPS — Convergence criterion. (Input)
When the relative change in GFNI Nfrom one iteration to the next is less than EPS, convergence is
assumed. A common value for EPS is 0.0001. Another common value is 100 times the machine epsi-

lon.
Default: EPS = 100 times the machine epsilon.

FORTRAN 90 Interface

Generic: GFNI N(F, P, GUESST, ...])
Spedcific: The specific interface names are S_GFNI Nand D_GFNI N
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FORTRAN 77 Interface

Single: GFNI N(F, P, EPS, GUESS)
Double: The double precision name is DGFNI N
Description

Function GFNI N evaluates the inverse of a continuous, strictly monotone function. Its most obvious use is in eval-
uating inverses of continuous distribution functions that can be defined by a FORTRAN function. If the
distribution function cannot be specified in a FORTRAN function, but the density function can be evaluated at a
number of points, then routine GCI N can be used.

Function GFNI N uses regula falsi and/or bisection, possibly with the Illinois modification (see Dahlquist and
Bjorck 1974). A maximum of 100 iterations are performed.

Comments

1. Informational errors

Type Code Description
4 1 After 100 attempts, a bound for the inverse cannot be determined. Try
again with a different initial estimate.
2 No unique inverse exists.
4 3 Over 100 iterations have occurred without convergence. Convergence is
assumed.

2. The function to be inverted need not be a distribution function, it can be any continuous, monotonic
function.

Example

In this example, we find the 99-th percentage point for an f random variable with 1 and 7 degrees of freedom.
(This problem could be solved easily using routine FI N. Compare the example for FI N). The function to be
inverted is the F distribution function, for which we use routine FDF. Since FDF requires the degrees of freedom
in addition to the point at which the function is evaluated, we write another function F that receives the degrees
of freedom via a common block and then calls FDF. The starting point (initial guess) is taken as two standard devi-
ations above the mean (since this would be a good guess for a normal distribution). It is not necessary to supply
such a good guess. In this particular case, an initial estimate of 1.0, for example, yields the same answer in essen-
tially the same number of iterations. (In fact, since the F distribution is skewed, the initial guess, 7.0, is really not
that close to the final answer.)
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USE UMACH_| NT
USE GFNI N_I NT
IMPLICI T ~ NONE
INTEGER  NOUT

REAL DFD, DFN, F, FO, GUESS, P, SORT
COVIVON /[ FCOM DFN, DFD
INTRINSI C SQRT
EXTERNAL F
1
CALL UVACH (2, NoQUT)
P =0.99
DFN = 1.0
DFD = 7.0
! Conput e GUESS as two standard
! devi ati ons above the nean.
GUESS = DFD/ (DFD-2.0) + 2. 0*SQRT( 2. 0* DFD* DFD* ( DFN+DFD- 2. 0) / (DFN* &
(DFD- 2. 0) **2* (DFD-4.0)))
FO = GFNI N(F, P, GUESS)
WRI TE (NOUT, 99999) FO
99999 FORVAT (' The F(1,7) 0.01 critical value is ', F6.3)
END

REAL FUNCTI ON F (X)
REAL X

REAL DFD, DFN, FDF
COVMON / FOOM DFN, DFD
EXTERNAL  FDF

F = FDF(X, DFN, DFD)

RETURN
END

Output

The F(1,7) 0.01 critical value is 12.246
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Mathieu Functions

Routines

Evaluate the eigenvalues for the periodic Mathieu functions ....... MATEE 456
Evaluate even, periodic Mathieufunctions .. .................... MATCE 459
Evaluate odd, periodic Mathieu functions. ...................... MATSE 463
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Usage Notes

Mathieu's equation is

2
%Jr (a—2qcos2v)y =0
v

It arises from the solution, by separation of variables, of Laplace’s equation in elliptical coordinates, where g is the
separation constant and q is related to the ellipticity of the coordinate system. If we let ¢ = cos v, then Mathieu’s

equation can be written as

(1—#)%— %+ (a+2g-4g7)y=0

For various physically important problems, the solution y(t) must be periodic. There exist, for particular values of
a, periodic solutions to Mathieu's equation of period kTt for any integer k. These particular values of g are called
eigenvalues or characteristic values. They are computed using the routine MATEE.

There exist sequences of both even and odd periodic solutions to Mathieu's equation. The even solutions are
computed by MATCE. The odd solutions are computed by MATSE.
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MATEE

Evaluates the eigenvalues for the periodic Mathieu functions.

Required Arguments
Q — Parameter. (Input)

ISYM — Symmetry indicator. (Input)

| SYM Meaning
0 Even
1 Odd

IPER — Periodicity indicator. (Input)

| SYM Meaning
0 pi
1 2* pi

EVAL — Vector of length N containing the eigenvalues. (Output)

Optional Arguments

N — Number of eigenvalues to be computed. (Input)
Default: N= size (EVAL,1)

FORTRAN 90 Interface

Generic: CALL MATEE(Q I SYMI PER EVAL [, ...])

Specific: The specific interface names are S_MATEE and D_MATEE.

FORTRAN 77 Interface

Single: CALL MATEE(Q N | SYM | PER EVAL)
Double: The double precision function name is DMATEE.
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Description

The eigenvalues of Mathieu's equation are computed by a method due to Hodge (1972). The desired eigenvalues
are the same as the eigenvalues of the following symmetric, tridiagonal matrix:

[ Wy X, 0 0

gXy W, qX, 0
0 gX, W, ¢X,
0 0 QX 4 W6

Here,
% _{\/7 if ISYM=IPER=m=0
m_ .
1  otherwise
W, =[m+1PER+2(1-IPER)ISYM]*+V,,
where

+q if IPER=1, ISYM=0and m =0
Vao=1—¢q if IPER=1, ISYM=1and m=0
0  otherwise
Since the above matrix is semi-infinite, it must be truncated before its eigenvalues can be computed. Routine
MATEE computes an estimate of the number of terms needed to get accurate results. This estimate can be over-
ridden by calling ML TEE with NORDER equal to the desired order of the truncated matrix.

The eigenvalues of this matrix are computed using the routine EVLSB found in the IMSL Fortran Math Library,
Chapter 2, “Eigensystem Analysis”.

Comments

1. Workspace may be explicitly provided, if desired, by use of MMTEE/ DMRTEE. The reference is
CALL MTEE(Q N I SYM | PER EVAL, NORDER WORKD, WORKE)
The additional arguments are as follows:

NORDER — Order of the matrix whose eigenvalues are computed. (Input)

WORKD — Work vector of size NORDER (Input/Output)
If EVAL is large enough then EVAL and WORKD can be the same vector.

WORKE — Work vector of size NORDER (Input/Output)

2. Informational error
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Type Code Description

4 1 The iteration for the eigenvalues did not converge.
Example

In this example, the eigenvalues for Q= 5, even symmetry, and 1t periodicity are computed and printed.

USE UMACH | NT
USE MATEE_| NT

IMPLICI T NONE
! Decl are vari abl es
| NTEGER N
PARAMVETER ( N=10)
|
| NTEGER I SYM | PER, K, NOUT
REAL Q EVAL(N)
! Conput e
Q =50
ISYM = 0
IPER = 0
CALL MATEE (Q |ISYM |PER, EVAL)

CALL UMACH (2, NOUT)
DO 10 K=1,

N

Print the results

WRI TE (NOUT, 99999) 2*K-2, EVAL(K)

10 CONTI NUE
99999 FORVAT (
END

Output

Ei genval ue
Ei genval ue
Ei genval ue
Ei genval ue
Ei genval ue
Ei genval uel0
Ei genval uel2
Ei genval uel4
Ei genval uel6
Ei genval uel8

oo~ NO

-15.
. 4491
17.
36.
64.
100.
144.
196.
256.
324.

Ei genval ue',

8000

0966
3609
1989
1264
0874
0641
0491
0386

12, ' =", F9.4)
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MATCE

Evaluates a sequence of even, periodic, integer order, real Mathieu functions.

Required Arguments

X — Argument for which the sequence of Mathieu functions is to be evaluated. (Input)

Q — Parameter. (Input)
The parameter Qmust be positive.

N — Number of elements in the sequence. (Input)

CE — Vector of length N containing the values of the function through the series. (Output)
CE(l') contains the value of the Mathieu function of order | -1 at Xforl =1toN

FORTRAN 90 Interface

Generic: CALL MATCE(X, QN CE)
Specific: The specific interface names are S_MATCE and D_MATCE.

FORTRAN 77 Interface

Single: CALL MATCE (X, QN CE)
Double: The double precision name is DMATCE.
Description

The eigenvalues of Mathieu's equation are computed using MATEE. The function values are then computed using
a sum of Bessel functions, see Gradshteyn and Ryzhik (1965), equation 8.661.

Comments
1. Workspace may be explicitly provided, if desired, by use of MMTCE/ DMRTCE. The reference is

CALL M2TCE (X, Q N CE, NORDER, NEEDEV, EVALO, EVAL1, CCEF, WORK, BSJ)
The additional arguments are as follows:
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2. Informatio

Type
4

Examples

Example 1

In this example, ce,(x =

USE CONST _|
USE MATCE |
USE UMACH_|
IMPLICIT

| NTEGER
PARAVETER

I NTEGER

NORDER — Order of the matrix used to compute the eigenvalues. (Input)
It must be greater than N. Routine MATSE computes NORDER by the following call to
MBTEE.

CALL MBTEE(Q N, NORDER)
NEEDEV — | ogical variable, if TRUE, the eigenvalues must be computed. (Input)

EVALO — Real work vector of length NORDER containing the eigenvalues computed by
MATEE with | SYM= 0 and | PER= 0. (Input/Output)
If NEEDEV is .TRUE,, then EVALO is computed by M2 TCE; otherwise, it must be set
as an input value.

EVAL1 — Real work vector of length NORDER containing the eigenvalues computed by
MATEE with | SYM=0 and | PER= 1. (Input/Output)
If NEEDEV is .TRUE,, then EVAL1 is computed by M2 TCE; otherwise, it must be set
as an input value.

COEF — Real work vector of length NORDER + 4.
WORK — Real work vector of length NORDER + 4.
BSJ — Real work vector of length 2* NORDER - 2.

nal error
Code Description
1 The iteration for the eigenvalues did not converge.

m/4,9=1),n=0, ..., 9is computed and printed.

NT
NT
NT

NONE
Decl are vari abl es
N
(N=10)

K, NOUT

REAL CE(N, Q X

Q=1.0
X = CONST("
X = 0.25% X
CALL MATCE

Conput e
PI")
(X, Q N CB

Print the results

CALL UMACH (2, NOUT)

DO 10 K=1,

N

WRI TE (NOUT, 99999) K-1, X, Q CE(K)
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10 CONTI NUE
99999 FORMAT (' ce sub', 12, ' (', F6.3, ',', F6.3, ') ="', F6.3)
END
Output
ce sub 0 ( 0.785, 1.000) = O0.654
ce sub 1 ( 0.785, 1.000) = 0.794
ce sub 2 ( 0.785, 1.000) = 0.299
ce sub 3 ( 0.785, 1.000) = -0.555
ce sub 4 ( 0.785, 1.000) = -0.989
ce sub 5 ( 0.785, 1.000) = -0.776
ce sub 6 ( 0.785, 1.000) = -0.086
ce sub 7 ( 0.785, 1.000) = 0.654
ce sub 8 ( 0.785, 1.000) = 0.998
ce sub 9 ( 0.785, 1.000) = 0.746
Example 2

In this example, we compute ce,(x, g) for various values of n and x and a fixed value of g. To avoid having to

recompute the eigenvalues, which depend on g but not on x, we compute the eigenvalues once and pass in their
value to M TCE. The eigenvalues are computed using MATEE. The routine MBTEE is used to compute NORDER
based on Qand N. The arrays BSJ, COEF and WORK are used as temporary storage in MTCE.

USE | MSL_LI BRARI ES
IMPLICI T NONE
! Decl are vari abl es

I NTEGER MAXORD, N, NX
PARAMETER ( MAXORD=100, N=4, NX=5)

INTEGER  ISYM K, NORDER NOUT
REAL BSJ(2* MAXORD- 2), CE(N), COEF( MAXORD+4)
REAL EVALO( MAXORD), EVALL1(MAXORD), PlI, Q WORK(MAXORD+4), X

! Comput e NORDER
Q=10
CALL MBTEE (Q N, NORDER)

CALL UVACH (2, NOUT)
WRI TE (NOUT, 99997) NORDER
! Conput e ei genval ues
ISYM =0
CALL MATEE (Q |ISYM 0, EVALO)
CALL MATEE (Q ISYM 1, EVAL1)

Pl = CONST('PI")
! Conput e function val ues

VWRI TE (NOUT, 99998)

DO 10 K=0, NX
X = (K*PI')/ NX
CALL MRTCE(X, Q N, CE, NORDER, .FALSE., EVALO, EVAL1, &
COEF, WORK, BSJ)
WRI TE (NOUT, 99999) X, CE(1), CE(2), CE(3), CE(4)

10 CONTI NUE
!
99997 FORMAT (* NORDER = ', 13)
99998 FORMAT (/, 28X, 'Order', /, 20X, 'O, 7X ‘'1', 7X &
"2 TX, '3
99999 FORMAT (' ce(', F6.3, ') ="', 4F8.3)
END
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Output
NORDER = 23
O der
0 1 2 3
ce( 0.000) = 0. 385 0. 857 1. 086 1. 067
ce( 0.628) = 0.564 0. 838 0.574 -0.131
ce( 1.257) = 0. 926 0.425 -0.575 -0.820
ce( 1.885) = 0.926 -0.425 -0.575 0. 820
ce( 2.513) = 0.564 -0.838 0.574 0.131
ce( 3.142) = 0.385 -0.857 1.086 -1.067
12 - Order
0.8 — 2
] 4—
0.4 —
Té‘ ]
) O.D—_.
T 4
o -
=0.4 —
-0.8
] ce, i:-e.-;,'
=1.2 rrTrr[rrrr [ rr 1t rr 1t rrrT
0.0 0.1 0.2 0.3 0.4 0.5

;
x/m

Figure 31, Plot of ce,, (x, g =1)
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MATSE

Evaluates a sequence of odd, periodic, integer order, real Mathieu functions.

Required Arguments

X — Argument for which the sequence of Mathieu functions is to be evaluated. (Input)

Q — Parameter. (Input)
The parameter Qmust be positive.

N — Number of elements in the sequence. (Input)

SE — Vector of length N containing the values of the function through the series. (Output)
SE(I ) contains the value of the Mathieu function of order | at Xforl =1toN

FORTRAN 90 Interface

Generic: CALL MATSE (X, Q N SE)
Specific: The specific interface names are S_MATSE and D_MATSE.

FORTRAN 77 Interface

Single: CALL MATSE (X, Q N SE)
Double: The double precision function name is DMATSE.
Description

The eigenvalues of Mathieu's equation are computed using MATEE. The function values are then computed using
a sum of Bessel functions, see Gradshteyn and Ryzhik (1965), equation 8.661.

Comments
1. Workspace may be explicitly provided, if desired, by use of MMTSE/ DVRTSE. The reference is

CALL M2TSE (X, Q N SE, NORDER, NEEDEV, EVALO, EVAL1, COEF, WORK, BSJ)
The additional arguments are as follows:
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NORDER — Order of the matrix used to compute the eigenvalues. (Input)
It must be greater than N. Routine MATSE computes NORDER by the following call to
M3TEE.

CALL M3TEE (Q N, NORDER)
NEEDEV — | ogical variable, if TRUE, the eigenvalues must be computed. (Input)

EVALO — Real work vector of length NORDER containing the eigenvalues computed by
MATEE with | SYM=1 and | PER= 0. (Input/Output)
If NEEDEV is .TRUE,, then EVALO is computed by M2 TSE; otherwise, it must be set
as an input value.

EVAL1 — Real work vector of length NORDER containing the eigenvalues computed by
MATEE with | SYM= 1 and | PER= 1. (Input/Output)
If NEEDEV is . TRUE,, then EVAL1 is computed by M2 TSE; otherwise, it must be set
as an input value.

COEF — Real work vector of length NORDER + 4.
WORK — Real work vector of length NORDER + 4.
BSI — Real work vector of length 2 * NOCRDER + 1.

2. Informational error

Type Code Description

4 1 The iteration for the eigenvalues did not converge.
Example
In this example, se,(x =T1/4,qg=10),n=0, ..., 9is computed and printed.

464



Mathieu Functions MATSE

1.2
0.8
0.4 -
1 ]
7 0.0
T i
® -
—0.4 —
—0.8
7 seg .-5!’.34
_1.2 IIII|IIII|IIII|IIII|IIII
0.0 0.1 0.2 0.3 0.4 0.5
X/
Figure 32, Plot of se,(x, g =1)
USE CONST | NT
USE MATSE_I NT
USE UMACH_| NT
IMPLICIT NONE
! Decl are vari abl es
| NTEGER N
PARAVETER  ( N=10)
!
| NTEGER K, NOUT
REAL SE(N), Q X
! Conput e
Q= 10.0
X = CONST(' PI")
X = 0.25* X

CALL MATSE (X, Q N, SE)
Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, N
VRI TE (NOUT, 99999) K-1, X, Q SE(K)

10 CONTI NUE
99999 FORVAT (' se sub', 12, ' (', F6.3, ',', F6.3, ') ="', F6.3)
END
Output
se sub 0 ( 0.785,10.000) = O0.250
se sub 1 ( 0.785,10.000) = 0.692
se sub 2 ( 0.785,10.000) = 1.082
se sub 3 ( 0.785,10.000) = 0.960
se sub 4 ( 0.785,10.000) = 0.230
se sub 5 ( 0.785,10.000) = -0.634
se sub 6 ( 0.785,10.000) = -0.981
se sub 7 ( 0.785,10.000) = -0.588
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0. 219
0.871

se sub 8 ( 0.785,10.000)
se sub 9 ( 0.785,10.000)
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Miscellaneous Functions

Routines

Spencedilogarithm........ ... ... ... ... .. ... SPENC 470
Initialize a Chebyshevseries......... ... o i, INITS 472
Evaluate a Chebyshevseries. ............ ... ... i i, CSEVL 474
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Usage Notes

Many functions of one variable can be numerically computed using a Chebyshev series,

f(x) = ijoAnTn<x) -1<x<1

A Chebyshev series is better for numerical computation than a Taylor series since the Chebyshev polynomials,

T,x), are better behaved than the monomials, x".

A Taylor series can be converted into a Chebyshev series using an algorithm of Fields and Wimp, (see Luke (1969),
page 292).

Let

ORI

be a Taylor series expansion valid for x| < 1. Define

:L ® <n+%>k<n+1>k§n+k
ALy (2n+ 1)K

A

where (a); = (g + k)/T(a) is Pochhammer's symbol.

(Note that (@)1 = (a + k)(@)g). Then,

£(x) =4r5(x) + Zw 4,Th(x) 0<x<l
n=1
where

T,(x)

are the shifted Chebyshev polynomials,

* *
Tn<x) = Tn(2x— 1)
In an actual implementation of this algorithm, the number of terms in the Taylor series and the number of terms

in the Chebyshev series must both be finite. If the Taylor series is an alternating series, then the error in using
only the first M terms is less than |€,, 4 11. The error in truncating the Chebyshev series to N terms is no more

than
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0
S
n=N+1

If the Taylor series is valid on |x| <R, then we can write

o n
f(x) = Z &R (x/R)
n=0
and use §,R" instead of §,, in the algorithm to obtain a Chebyshev series in x/R valid for 0 < x < R. Unfortunately, if

Ris large, then the Chebyshev series converges more slowly.

The Taylor series centered at zero can be shifted to a Taylor series centered at c. Let t=x - ¢, so

Py = £ (e) = Sra i e) = Srasiat () 7
- Z::O%nt "= z::()% n(x -C >n

By interchanging the order of the double sum, it can easily be shown that

-3 ()

By combining scaling and shifting, we can obtain a Chebyshev series valid over any interval [a, b] for which the
original Taylor series converges.

The algorithm can also be applied to asymptotic series,

FO)Y ™ as x| =

by treating the series truncated to M terms as a polynomial in 1/x. The asymptotic series is usually divergent; but

if it is alternating, the error in truncating the series to M terms is less than |5M+1| /R for R < x < oo, Normally,
as Mincreases, the error initially decreases to a small value and then increases without a bound. Therefore, there
is a limit to the accuracy that can be obtained by increasing M. More accuracy can be obtained by increasing R.

The optimal value of M depends on both the sequence &; and R. For R fixed, the optimal value of M can be found

by finding the value of M at which |&,,1/ RY starts to increase.

Since we want a routine accurate to near machine precision, the algorithm must be implemented using some-
what higher precision than is normally used. This is best done using a symbolic computation package.

469



Miscellaneous Functions SPENC

SPENC

This function evaluates a form of Spence’s integral.

Function Return Value

SPENC — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: SPENC (X)
Spedcific: The specific interface names are S_SPENC and D_SPENC.

FORTRAN 77 Interface

Single: SPENC (X)
Double: The double precision function name is DSPENC.
Description

The Spence dilogarithm function, s(x), is defined to be

“In|1 - y|
S<x>:_j0n ¥ ydy

For |x] < 1, the uniformly convergent expansion
k
_\"7 x
s(x)) =) 5
k=1

Spence’s function can be used to evaluate much more general integral forms. For example,

is valid.
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a(cz+d>

a(cz+d>

J‘Zlog(ax+b>

), exvd dx =log

ad — be

Example

In this example, s(0.2) is computed and printed.

99999

Output
SPENC(

USE SPENC | NT
USE UMACH_| NT

IMPLICIT NONE
Decl are vari abl es
| NTEGER NOUT

REAL VALUE, X

Conmput e
X =0.2
VALUE = SPENC( X)

Print the results
CALL UMACH (2, NauT)
VRI TE (NOUT, 99999) X, VALUE
FORVAT (' SPENC(', F6.3, ') ="', F6.3)
END

0.200) = 0.211

|

ad — be

|
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INITS

This function initializes the orthogonal Chebyshev series so the function value is the number of terms needed to
insure the error is no larger than the requested accuracy.

Function Return Value

INITS — Number of terms needed to insure the error is no larger than ETA (Output)

Required Arguments
0S — Vector of length NOS containing coefficients in an orthogonal series. (Input)
NOS — Number of coefficients in OS. (Input)

ETA — Requested accuracy of the series. (Input)
Contrary to the usual convention, ETAis a REAL argument to | NI TDS.

FORTRAN 90 Interface

Generic: I NI TS (CS, NCS, ETA)
Specific: The specific interface names are | Nl TSand | NI TDS.

FORTRAN 77 Interface

Single: I NI TS(CS, NCS, ETA)
Double: The double precision function nameis | NI TDS.
Description

Function | NI TS initializes a Chebyshev series. The function | NI TS returns the number of terms in the series s
of length n needed to insure that the error of the evaluated series is everywhere less than ETA The number of
input terms n must be greater than 1, so that a series of at least one term and an error estimate can be obtained.
In addition, ETA should be larger than the absolute value of the last coefficient. If it is not, then all the terms of
the series must be used, and no error estimate is available.
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Comments

ETA will usually be chosen to be one tenth of machine precision.
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CSEVL

This function evaluates the N-term Chebyshev series.

Function Return Value

CSEVL — Function value. (Output)

Required Arguments
X — Argument at which the series is to be evaluated. (Input)

€S — Vector of length N containing the terms of a Chebyshev series. (Input)
In evaluating CS, only half of the first coefficient is summed.

Optional Arguments

N — Number of terms in the vector CS. (Input)
Default: N=size(CS, 1)

FORTRAN 90 Interface

Generic: CSEVL (X CS[,...])
Spedcific: The specific interface names are S_CSEVL and D_CSEVL.

FORTRAN 77 Interface

Single: CSEVL (X, CS,N
Double: The double precision function name is DCSEVL.
Description

Function CSEVL evaluates a Chebyshev series whose coefficients are stored in the array s of length n at the point
x. The argument x must lie in the interval[-1, +1]. Other finite intervals can be linearly transformed to this canoni-
cal interval. Also, the number of terms in the series must be greater than zero but less than 1000. This latter limit
is purely arbitrary; it is imposed in order to guard against the possibility of a floating point number being passed

as an argument for n.
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Comments
Informational error
Type Code Description
3 7 Xis outside the interval (- 1.1, +1.1)
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User Errors

IMSL routines attempt to detect user errors and handle them in a way that provides as much information to the
user as possible. To do this, we recognize various levels of severity of errors, and we also consider the extent of
the error in the context of the purpose of the routine; a trivial error in one situation may be serious in another.
IMSL routines attempt to report as many errors as they can reasonably detect. Multiple errors present a difficult
problem in error detection because input is interpreted in an uncertain context after the first error is detected.

What Determines Error Severity

In some cases, the user’s input may be mathematically correct, but because of limitations of the computer arith-
metic and of the algorithm used, it is not possible to compute an answer accurately. In this case, the assessed
degree of accuracy determines the severity of the error. In cases where the routine computes several output
quantities, if some are not computable but most are, an error condition exists. The severity depends on an
assessment of the overall impact of the error.

Terminal errors

If the user's input is regarded as meaningless, such as N=-1 when “N'is the number of equations, the routine
prints a message giving the value of the erroneous input argument(s) and the reason for the erroneous input.
The routine will then cause the user's program to stop. An error in which the user's input is meaningless is the
most severe error and is called a terminal error. Multiple terminal error messages may be printed from a single
routine.

Informational errors

In many cases, the best way to respond to an error condition is simply to correct the input and rerun the pro-
gram. In other cases, the user may want to take actions in the program itself based on errors that occur. An error
that may be used as the basis for corrective action within the program is called an informational error. If an infor-
mational error occurs, a user-retrievable code is set. A routine can return at most one informational error for a
single reference to the routine. The codes for the informational error codes are printed in the error messages.

Other errors

In addition to informational errors, IMSL routines issue error messages for which no user-retrievable code is set.
Multiple error messages for this kind of error may be printed. These errors, which generally are not described in
the documentation, include terminal errors as well as less serious errors. Corrective action within the calling pro-
gram is not possible for these errors.
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Kinds of Errors and Default Actions

Five levels of severity of errors are defined in the MATH/LIBRARY Special Functions. Each level has an associated
PRINT attribute and a STOP attribute. These attributes have default settings (YES or NO), but they may also be set
by the user. The purpose of having multiple error severity levels is to provide independent control of actions to be
taken for errors of different severity. Upon return from an IMSL routine, exactly one error state exists. (A code 0
“error”is no informational error.) Even if more than one informational error occurs, only one message is printed (if
the PRINT attribute is YES). Multiple errors for which no corrective action within the calling program is reasonable
or necessary result in the printing of multiple messages (if the PRINT attribute for their severity level is YES).
Errors of any of the severity levels except level 5 may be informational errors.

Level 1: Note. A note is issued to indicate the possibility of a trivial error or simply to provide
information about the computations. Default attributes: PRINT=NO, STOP=NO

Level 2: Alert. An alert indicates that the user should be advised about events occurring in the
software. Default attributes: PRINT=NO, STOP=NO

Level 3: Warning. A warning indicates the existence of a condition that may require corrective
action by the user or calling routine. A warning error may be issued because the results are
accurate to only a few decimal places, because some of the output may be erroneous but most of
the output is correct, or because some assumptions underlying the analysis technique are
violated. Often no corrective action is necessary and the condition can be ignored. Default
attributes: PRINT=YES, STOP=NO

Level 4: Fatal. A fatal error indicates the existence of a condition that may be serious. In most
cases, the user or calling routine must take corrective action to recover. Default attributes:
PRINT=YES, STOP=YES

Level 5: Terminal. A terminal error is serious. It usually is the result of an incorrect specification,
such as specifying a negative number as the number of equations. These errors may also be
caused by various programming errors impossible to diagnose correctly in FORTRAN. The resulting
error message may be perplexing to the user. In such cases, the user is advised to compare
carefully the actual arguments passed to the routine with the dummy argument descriptions given
in the documentation. Special attention should be given to checking argument order and data

types.

Aterminal error is not an informational error because corrective action within the program is generally not
reasonable. In normal usage, execution is terminated immediately when a terminal error occurs. Messages
relating to more than one terminal error are printed if they occur. Default attributes: PRINT=YES, STOP=YES

The user can set PRINT and STOP attributes by calling ERSET as described in “Routines for Error Handling.”
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Errors in Lower-Level Routines

It is possible that a user’s program may call an IMSL routine that in turn calls a nested sequence of lower-level
IMSL routines. If an error occurs at a lower level in such a nest of routines and if the lower-level routine cannot
pass the information up to the original user-called routine, then a traceback of the routines is produced. The only
common situation in which this can occur is when an IMSL routine calls a user-supplied routine that in turn calls

another IMSL routine.

Routines for Error Handling

There are three ways in which the user may interact with the IMSL error handling system: (1) to change the
default actions, (2) to retrieve the integer code of an informational error so as to take corrective action, and (3) to
determine the severity level of an error. The routines to use are ERSET, IERCD and N1RTY, respectively.
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ERSET

Change the default printing or stopping actions when errors of a particular error severity level occur.

Required Arguments

IERSVR — Error severity level indicator. (Input)
If | ERSVR = 0, actions are set for levels 1 to 5. If | ERSVRis 1 to 5, actions are set for errors of the
specified severity level.

IPACT — Printing action. (Input)

| PACT Action

-1 Do not change current setting(s).
0 Do not print.

1 Print.

2 Restore the default setting(s).

ISACT — Stopping action. (Input)

| SACT Action

-1 Do not change current setting(s).
0 Do not stop.

1 Stop.

2 Restore the default setting(s).

FORTRAN 90 Interface

Generic: CALL ERSET (I ERSVR | PACT, | SACT)
Specific: The specific interface name is ERSET.

FORTRAN 77 Interface
Single: CALL ERSET (I ERSVR, | PACT, | SACT)
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IERCD and NIRTY

The last two routines for interacting with the error handling system, | ERCDand N1RTY, are | NTEGER functions
and are described in the following material.

| ERCDretrieves the integer code for an informational error. Since it has no arguments, it may be used in the fol-
lowing way:

| CODE = | ERCI)

The function retrieves the code set by the most recently called IMSL routine.

NLRTY retrieves the error type set by the most recently called IMSL routine. It is used in the following way:
| TYPE = NLRTY(1)

| TYPE=1, 2,4, and 5 correspond to error severity levels 1, 2, 4, and 5, respectively. | TYPE=3 and | TYPE=6
are both warning errors, error severity level 3. While | TYPE = 3 errors are informational errors (I ERCD( ) = 0),
| TYPE =6 errors are not informational errors (I ERCD ) = 0).

For software developers requiring additional interaction with the IMSL error handling system, see Aird and How-
ell (1991).

Examples

Changes to Default Actions

Some possible changes to the default actions are illustrated below. The default actions remain in effect for the
kinds of errors not included in the call to ERSET.

To turn off printing of warning error messages:
CALL ERSET (3,0,-1)

To stop if warning errors occur:
CALL ERSET (3,-1,1)

To print all error messages:
CALL ERSET (0,1,-1)

To restore all default settings:
CALL ERSET (0, 2, 2)
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Machine-Dependent Constants

The function subprograms in this section return machine-dependent information and can be used to enhance
portability of programs between different computers. The routines | MACH, and AMACH describe the computer’'s

arithmetic. The routine UMACH describes the input, ouput, and error output unit numbers.
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IMACH

This function retrieves machine integer constants that define the arithmetic used by the computer.

Function Return Value
I MACH(1) = Number of bits per integer storage unit.
I MACH(2) = Number of characters per integer storage unit:

Integers are represented in M-digit, base A form as

M
O'Z xkAk
k=0
where gis the signand 0 < x; <A k=0, ..., M.

Then,
I MACH(3) = A, the base.
I MACH4) = M, the number of base-A digits.
| MACH(5) = AM — 1, the largest integer.

The machine model assumes that floating-point numbers are represented in normalized N-digit, base B form as

N _
UBEZ x, B k
k=1

where gisthe sign, 0 <x; <B, 0 <xy<B k=2, ..., Nand E,;,, < £ < Euax TheN,
| MACH(6) = B, the base.
| MACH7) = N, the number base-B-digits in single precision.
I MACH(8) = Emins, the smallest single precision exponent.

I MACH?9) = Emaxs, the largest single precision exponent.
| MACH10) = N, the number base-B-digits in double precision.

I MACH11) :Emind, the smallest double precision exponent.

I MACH(12) = Emaxd, largest double precision exponent.
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Required Arguments

I — Index of the desired constant. (Input)

FORTRAN 90 Interface
Generic: I MACH(I)

Specific: The specific interface name is | MACH.

FORTRAN 77 Interface
Single: I MACH(I)
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AMACH

The function subprogram AMACH retrieves machine constants that define the computer’s single-precision or
double precision arithmetic. Such floating-point numbers are represented in normalized N-digit, base B form as

N _
oBF Z x; B k
k=1

where o is the sign,0 <x; <B, 0 <x;<B k=2, ..., Nand

Epin <E < Epgy

min —

Function Return Value
AMACH(1) = BEmi“fl, the smallest normalized positive number.
AVACH?2) = B ( 1- B_N>, the largest number.
AMACH33) = B, the smallest relative spacing.
ANVACH4) = B'™, the largest relative spacing.

AMACH() = log, ( B),

AMACH(6) = NaN (non-signaling not a number).
AMACH7) = positive machine infinity.
AMACH(8) = negative machine infinity.

See Comment 1 for a description of the use of the generic version of this function.

See Comment 2 for a description of m n, max, and N.

Required Arguments

I — Index of the desired constant. (Input)

FORTRAN 90 Interface

Generic: AMACH (1)
Specific: The specific interface names are S_ AMACHand D_AMACH.
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FORTRAN 77 Interface

Single: AMACH (1)
Double: The double precision name is DMACH,
Comments

1. If the generic version of this function is used, the immediate result must be stored in a variable
before use in an expression. For example:
X = AMACH(I')
Y = SQRT( X)
must be used rather than
Y =SOQRT(AMACH(I)) .
If this is too much of a restriction on the programmer, then the specific name can be used without
this restriction.

2. Note that for single precision B =1 MACH®6), N =1 MACH7).
Emin =1 MACH®8), and £,,,, = | MACH?).
For double precision B =1 MACH®6), N =1 MACH10).
Emin =1 MACH11), and £,,,,, = | MACH(12).

3. The IEEE standard for binary arithmetic (see IEEE 1985) specifies quiet NaN (not a number) as the
result of various invalid or ambiguous operations, such as 0/0. The intent is that AMACH(6) return a
quiet NaN. On |EEE format computers that do not support a quiet NaN, a special value near
AMACH?2) is returned for AMACH(6). On computers that do not have a special representation for
infinity, AMACH(7) returns the same value as AMACH?2).
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DMACH

See AMACH.
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IFNAN(X)

This logical function checks if the argument Xis NaN (not a number).

Function Return Value

IFNAN - Logical function value. True is returned if the input argument is a NAN. Otherwise, False is
returned. (Output)

Required Arguments

X - Argument for which the test for NANis desired. (Input)

FORTRAN 90 Interface

Generic: I FNAN (X)
Specific: The specific interface names are S_| FNANand D_| FNAN.

FORTRAN 77 Interface

Single: I FNAN (X)
Double: The double precision name is DI FNAN.
Description

The logical function I FNAN checks if the single or double precision argument Xis NAN (not a number). The func-
tion I FNAN s provided to facilitate the transfer of programs across computer systems. This is because the check
for NaN can be tricky and not portable across computer systems that do not adhere to the IEEE standard. For
example, on computers that support the IEEE standard for binary arithmetic (see IEEE 1985), NaN is specified as
a bit format not equal to itself. Thus, the check is performed as

I FNAN = X . NE. X
On other computers that do not use IEEE floating-point format, the check can be performed as:

FNAN = X . EQ AMACH(6)
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The function | FNANis equivalent to the specification of the function Isnan listed in the Appendix, (IEEE 1985).
The above example illustrates the use of I FNAN. If X is NaN, a message is printed instead of X. (Routine UMACH
which is described in the following section, is used to retrieve the output unit number for printing the message.)

Example

USE | FNAN_| NT
USE AMACH_| NT
USE UMACH_I NT

IMPLICI T NONE
| NTEGER NOUT
REAL X
CALL UMACH (2, NOUT)
X = AMACH( 6)
I F (I FNAN(X)) THEN
WRI TE (NOQUT,*) ' X is NaN (not a nunber).'
ELSE
WRITE (NOUT, *) ' X ="', X
END | F

END

Output

X is NaN (not a nunber).
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UMACH

Routine UMACH sets or retrieves the input, output, or error output device unit numbers.

Required Arguments

N — Integer value indicating the action desired. If the value of Nis negative, the input, output, or error
output unit number is reset to NUNI T. If the value of Nis positive, the input, output, or error output
unit number is returned in NUNI T. See the table in argument NUNI T for legal values of N. (Input)

NUNIT — The unit number that is either retrieved or set, depending on the value of input argument N
(Input/Output)

The arguments are summarized by the following table:

N Effect
1 Retrieves input unit number in NUNI T.
2 Retrieves output unit number in
NUNI T.
3 Retrieves error output unit number in
NUNI T.

-1 Sets the input unit number to NUNI T.
-2 Sets the output unit number to NUNI T.

-3 Sets the error output unit number to
NUNI T.

FORTRAN 90 Interface

Generic: CALL UVACH(N NUNI T)
Specific: The specific interface name is UMACH.

FORTRAN 77 Interface
Single: CALL UVMACH(N NUNI T)
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Description

Routine UMACH sets or retrieves the input, output, or error output device unit numbers. UMACH is set automati-
cally so that the default FORTRAN unit numbers for standard input, standard output, and standard error are
used. These unit numbers can be changed by inserting a call to UMACH at the beginning of the main program
that calls MATH/LIBRARY routines. If these unit numbers are changed from the standard values, the user should
insert an appropriate OPEN statement in the calling program.

Example

In the following example, a terminal error is issued from the MATH/LIBRARY AMACH function since the argument
is invalid. With a call to UMACH, the error message will be written to a local file named "CHECKERR'.

USE AMACH_| NT
USE UMACH_| NT

IMPLICIT NONE

| NTEGER N, NUNI T
REAL X
! Set Par anet er
N=20
!
NUNIT = 9

CALL UMACH (-3, NUNIT)
OPEN (UNI T=9, FI LE=' CHECKERR )

X = AVACH(N)
END

Output

The output fromthis exanple, witten to “CHECKERR' i s:
*** TERM NAL ERROR 5 from AMACH. The argunent nust be between 1 and 8
*xx inclusive. N=0
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Reserved Names

When writing programs accessing IMSL MATH/LIBRARY Special Functions, the user should choose FORTRAN
names that do not conflict with names of IMSL subroutines, functions, or named common blocks, such as the
workspace common block WORKSP (see Automatic Workspace Allocation). The user needs to be aware of two
types of name conflicts that can arise. The first type of name conflict occurs when a name (technically a symbolic
name) is not uniquely defined within a program unit (either a main program or a subprogram). For example, such
a name conflict exists when the name BSJ Siis used to refer both to a type REAL variable and to the IMSL routine
BSJ S in a single program unit. Such errors are detected during compilation and are easy to correct. The second
type of name conflict, which can be more serious, occurs when names of program units and named common
blocks are not unique. For example, such a name conflict would be caused by the user defining a routine named
WORKSP and also referencing a MATH/LIBRARY Special Functions routine that uses the named common block
WORKSP. Likewise, the user must not define a subprogram with the same name as a subprogram in
MATH/LIBRARY Special Functions, that is referenced directly by the user's program or is referenced indirectly by
other MATH/LIBRARY Special Functions subprograms.

MATH/LIBRARY Special Functions consists of many routines, some that are described in the User's Manual and
others that are not intended to be called by the user and, hence, that are not documented. If the choice of
names were completely random over the set of valid FORTRAN names and if a program uses only a small subset
of MATH/LIBRARY Special Functions, the probability of name conflicts is very small. Since names are usually cho-
sen to be mnemonic, however, the user may wish to take some precautions in choosing FORTRAN names.

Many IMSL names consist of a root name that may have a prefix to indicate the type of the routine. For example,
the IMSL single precision routine for computing Bessel functions of the first kind with real order has the name
BSJS, which is the root name, and the corresponding IMSL double precision routine has the name DBSJ S. Asso-
ciated with these two routines are B2JS and DB2JS. BSJ S is listed in the Alphabetical Index of Routines, but
DBSJS, B2JS, and DB2J S are not. The user of BSJ S must consider both names BSJS and B2JS to be
reserved; likewise, the user of DBSJ S must consider both names DBSJS and DB2J S to be reserved. The root
names of all routines and named common blocks that are used by MATH/LIBRARY Special Functions and that do
not have a numeral in the second position of the root name are listed in the Alphabetical Index of Routines.
Some of the routines in this Index are not intended to be called by the user and so are not documented. The
careful user can avoid any conflicts with IMSL names if the following rules are observed:

Do not choose a name that appears in the Alphabetical Summary of Routines in the User’s Manual,
nor one of these names precededbyaD S ,D ,C ,orZ_.

Do not choose a name of three or more characters with a numeral in the second or third position.

These simplified rules include many combinations that are, in fact, allowable. However, if the user selects names
that conform to these rules, no conflict will be encountered.
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Deprecated Features and Deleted Routines

Automatic Workspace Allocation

FORTRAN subroutines that work with arrays as input and output often require extra arrays for use as workspace
while doing computations or moving around data. IMSL routines generally do not require the user explicitly to
allocate such arrays for use as workspace. On most systems the workspace allocation is handled transparently.
The only limitation is the actual amount of memory available on the system.

On some systems the workspace is allocated out of a stack that is passed as a FORTRAN array in a named com-
mon block WORKSP. A very similar use of a workspace stack is described by Fox et al. (1978, pages 116- 121). (For
compatibility with older versions of the IMSL Libraries, space is allocated from the COMMON block, if possible.)

The arrays for workspace appear as arguments in lower-level routines. For example, the IMSL Math routine
LSARG(in Chapter 1, “Linear Systems”), which solves systems of linear equations, needs arrays for workspace.
LSARGallocates arrays from the common area, and passes them to the lower-level routine L2ZARGwhich does
the computations. In the “Comments” section of the documentation for LSARG the amount of workspace is
noted and the call to L2ZARGis described. This scheme for using lower-level routines is followed throughout the
IMSL Libraries. The names of these routines have a “2" in the second position (or in the third position in double
precision routines having a "D’ prefix). The user can provide workspace explicitly and call directly the “2-level” rou-
tine, which is documented along with the main routine. In a very few cases, the 2-level routine allows additional
options that the main routine does not allow.

Prior to returning to the calling program, a routine that allocates workspace generally deallocates that space so
that it becomes available for use in other routines.

Changing the Amount of Space Allocated
This section is relevant only to those systems on which the transparent workspace allocator is not available.

By default, the total amount of space allocated in the common area for storage of numeric data is 5000 numeric
storage units. (A numeric storage unit is the amount of space required to store an integer or a real number. By
comparison, a double precision unit is twice this amount. Therefore, the total amount of space allocated in the
common area for storage of numeric data is 2500 double precision units.) This space is allocated as needed for
I NTEGER REAL, or other numeric data. For larger problems in which the default amount of workspace is insuf-
ficient, the user can change the allocation by supplying the FORTRAN statements to define the array in the named
common block and by informing the IMSL workspace allocation system of the new size of the common array. To
request 7000 units, the statements are
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COVMON / WORKSP/  RWKSP
REAL RWKSP( 7000)
CALL | WKI N( 7000)

If an IMSL routine attempts to allocate workspace in excess of the amount available in the common stack, the
routine issues a fatal error message that indicates how much space is needed and prints statements like those
above to guide the user in allocating the necessary amount. The program below uses IMSL routine BSJS (See
Chapter 6, “Bessel Functions” of this manual) to illustrate this feature.

This routine requires workspace that is just larger than twice the number of function values requested.

| NTEGER N
REAL BS(10000), X, XNU
EXTERNAL BSJS
! Set Parameters

XNU = .5
X =1
N = 6000
CALL BSJS (XNU, X, N, BS)
END
Output
*** TERM NAL ERROR from BSJS. |Insufficient workspace for
*xx current allocation(s). Correct by calling
*xx IVKIN frommain programw th the three
*oxx foll owi ng statements: (REGARDLESS OF
i PRECI SI ON)
ok COWDON / WORKSP/  RVKSP
i REAL RWKSP(12018)
* k% CALL | VKI N(12018)
*** TERM NAL ERROR from BSJS. The workspace requirenent is
*kk based on N =6000.

STOP
In most cases, the amount of workspace is dependent on the parameters of the problem so the amount needed
is known exactly. In a few cases, however, the amount of workspace is dependent on the data (for example, if it is
necessary to count all of the unique values in a vector). Thus, the IMSL routine cannot tell in advance exactly how
much workspace is needed. In such cases, the error message printed is an estimate of the amount of space
required.

Character Workspace

Since character arrays cannot be equivalenced with numeric arrays, a separate named common block WKSPCH is
provided for character workspace. In most respects, this stack is managed in the same way as the numeric stack.
The default size of the character workspace is 2000 character units. (A character unit is the amount of space
required to store one character.) The routine analogous to | VKI N used to change the default allocation is

I VKCI N

The routines in the following list are being deprecated in Version 2.0 of MATH/LIBRARY Special Functions. A dep-
recated routine is one that is no longer used by anything in the library but is being included in the product for
those users who may be currently referencing it in their application. However, any future versions of
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MATH/LIBRARY Special Functions will not include these routines. If any of these routines are being called within
an application, it is recommended that you change your code or retain the deprecated routine before replacing
this library with the next version. Most of these routines were called by users only when they needed to set up

their own workspace. Thus, the impact of these changes should be limited.

&2DF
&IN
G3DF

The following specific FORTRAN intrinsic functions are no longer supplied by IMSL. They can all be found in their
manufacturer's FORTRAN runtime libraries. If any change must be made to the user’s application as a result of
their removal from the IMSL Libraries, it is limited to the redeclaration of the function from “external” to “intrinsic.”
Argument lists and results should be identical.

ACOS CEXP DATAN2 DSQRT
Al NT CLOG DCOS DTAN
ALOG cos DCCSH DTANH
ALOGLO COSH DEXP EXP
ASIN CSI N DI NT SIN
ATAN CSQRT DLOG SI NH
ATAN2 DACOS DLOGLO SQRT
CABS DASI N DSI N TAN
ccos DATAN DSI NH TANH
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of Routines

ACOS Evaluates the complex arc cosine.

ACOSH Evaluates the real or complex arc hyperbolic cosine.

Al Evaluates the Airy function.

Al D Evaluates the derivative of the Airy function.

Al DE Evaluates the Airy function of the second kind.

Al E Evaluates the exponentially scaled derivative of the Airy
function.

AKEI 0 Evaluates the Kelvin function of the second kind, kei, of order
zero.

AKEI 1 Evaluates the Kelvin function of the second kind, kei, of order
one.

AKEI PO Evaluates the derivative of the Kelvin function of the second
kind, kei, of order zero.

AKERO Evaluates the Kelvin function of the second kind, ker, of order
zero.

AKER1 Evaluates the Kelvin function of the second kind, ker, of order
one.

AKERPO Evaluates the derivative of the Kelvin function of the second
kind, ker, of order zero.

AKS1DF Evaluates the cumulative distribution function of the one-sided
Kolmogorov-Smirnov goodness of fit D* or D™ test statistic
based on continuous data for one sample.

AKS2DF Evaluates the cumulative distribution function of the
Kolmogorov-Smirnov goodness of fit D test statistic based on
continuous data for two samples.
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ALBETA Evaluates the natural logarithm of the complete beta function
for positive arguments.

ALGAMS Returns the logarithm of the absolute value of the gamma func-
tion and the sign of gamma.

ALI Evaluates the logarithmic integral.

ALNDF Evaluates the lognormal cumulative probability distribution
function

ALNGAM Evaluates the real or complex function, In [y (x)|.

ALNI N Evaluates the inverse of the lognormal cumulative probability
distribution function.

ALNPR Evaluates the lognormal probability density function.

ALNREL Evaluates In(x + 1) for real or complex x.

AVACH Retrieves single-precision machine constants.

ANORDF Evaluates the standard normal (Gaussian) cumulative distribu-
tion function.

ANORPR Evaluates the normal probability density function.

ANORI N Evaluates the inverse of the standard normal (Gaussian) cumu-
lative distribution function.

ASI N Evaluates the complex arc sine.

ASI NH Evaluates the sinh~" arc sine x for real or complex x.

ATAN Evaluates the complex arc tangent.

ATAN2 Evaluates the complex arc tangent of a ratio.

ATANH Evaluates tanh™" x for real or complex x.

BEI O Evaluates the Kelvin function of the first kind, bei, of order zero.

BEI 1 Evaluates the Kelvin function of the first kind, bei, of order one.

BEI PO Evaluates the derivative of the Kelvin function of the first kind,
bei, of order zero.

BERO Evaluates the Kelvin function of the first kind, ber, of order zero.

BER1 Evaluates the Kelvin function of the first kind, ber, of order one.
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BERPO Evaluates the derivative of the Kelvin function of the first kind,
ber, of order zero.

BETA Evaluates the real or complex beta function, B(a,b).

BETAI Evaluates the incomplete beta function ratio.

BETDF Evaluates the beta cumulative distribution function.

BETI N Evaluates the inverse of the beta cumulative distribution
function.

BETNDF Evaluates the beta cumulative distribution function.

BETNI N Evaluates the inverse of the beta cumulative distribution
function.

BETNPR This function evaluates the noncentral beta probability density
function.

BETPR Evaluates the beta probability density function.

BI Evaluates the Airy function of the second kind.

BI D Evaluates the derivative of the Airy function of the second kind.

Bl DE Evaluates the exponentially scaled derivative of the Airy func-
tion of the second kind.

Bl E Evaluates the exponentially scaled Airy function of the second
kind.

Bl NDF Evaluates the binomial cumulative distribution function.

Bl NOM Evaluates the binomial coefficient.

Bl NPR Evaluates the binomial probability density function.

BNRDF Evaluates the bivariate normal cumulative distribution function.

BSI 0 Evaluates the modified Bessel function of the first kind of order
zero.

BSI OE Evaluates the exponentially scaled modified Bessel function of
the first kind of order zero.

BSI 1 Evaluates the modified Bessel function of the first kind of order
one.

BSI 1E Evaluates the exponentially scaled modified Bessel function of
the first kind of order one.

BSI ES Evaluates a sequence of exponentially scaled modified Bessel
functions of the first kind with nonnegative real order and real
positive arguments.

BSI NS Evaluates a sequence of modified Bessel functions of the first
kind with integer order and real or complex arguments.

BSI S Evaluates a sequence of modified Bessel functions of the first
kind with real order and real positive arguments.

BSJO Evaluates the Bessel function of the first kind of order zero.
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BSJ1 Evaluates the Bessel function of the first kind of order one.
BSINS Evaluates a sequence of Bessel functions of the first kind with
integer order and real arguments.
BSJS Evaluates a sequence of Bessel functions of the first kind with
real order and real positive arguments.
BSKO Evaluates the modified Bessel function of the second kind of
order zero.
BSKOE Evaluates the exponentially scaled modified Bessel function of
the second kind of order zero.
BSK1 Evaluates the modified Bessel function of the second kind of
order one.
BSK1E Evaluates the exponentially scaled modified Bessel function of
the second kind of order one.
BSKES Evaluates a sequence of exponentially scaled modified Bessel
functions of the second kind of fractional order.
BSKS Evaluates a sequence of modified Bessel functions of the sec-
ond kind of fractional order.
BSYO Evaluates the Bessel function of the second kind of order zero.
BSY1 Evaluates the Bessel function of the second kind of order one.
BSYS Evaluates a sequence of Bessel functions of the second kind
with real nonnegative order and real positive arguments.
CAl Evaluates the Airy function of the first kind for complex arguments.
CAI D Evaluates the derivative of the Airy function of the first kind for complex arguments.
CARG Evaluates the argument of a complex number.
CBI Evaluates the Airy function of the second kind for complex arguments.
CBI D Evaluates the derivative of the Airy function of the second kind for complex
arguments.
CBI S Evaluates a sequence of modified Bessel functions of the first kind with real order
and complex arguments.
CBJS Evaluates a sequence of Bessel functions of the first kind with real order and com-
plex arguments.
CBKS Evaluates a sequence of Modified Bessel functions of the second kind with real order

and complex arguments.
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CBRT Evaluates the cube root.

CBYS Evaluates a sequence of Bessel functions of the second kind with real order and
complex arguments.

CERFE Evaluates the complex scaled complemented error function.

CHI Evaluates the hyperbolic cosine integral.

CHI DF Evaluates the chi-squared cumulative distribution function

CH IN Evaluates the inverse of the chi-squared cumulative distribution function.

CHI PR Evaluates the chi-squared probability density function

c Evaluates the cosine integral.

CIN Evaluates a function closely related to the cosine integral.

Cl NH Evaluates a function closely related to the hyperbolic cosine integral.

COsDG Evaluates the cosine for the argument in degrees.

cor Evaluates the cotangent.

CSEVL Evaluates the N-term Chebyshev series.

CSNDF Evaluates the noncentral chi-squared cumulative distribution function.

CSNI'N Evaluates the inverse of the noncentral chi-squared cumulative function.

CSNPR This function evaluates the noncentral chi-squared probability density function.

CWPL Evaluates the Weierstrass P-function in the lemniscat case for complex argument
with unit period parallelogram.

CWPLD Evaluate the first derivative of the Weierstrass P-function in the lemniscatic case for
complex argum with unit period parallelogram.

CWPQ Evaluates the Weierstrass P-function in the equianharmonic case for complex argu-
ment with unit period parallelogram.

QWPQD Evaluates the first derivative of the Weierstrass P-function in the equianharmonic
case for complex argument with unit period parallelogram.

DAWS Evaluates Dawson function.
DIVACH Retrieves double precision machine constants.
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El Evaluates the exponential integral for arguments greater than
zero and the Cauchy principal value of the integral for argu-
ments less than zero.

El Evaluates the exponential integral for arguments greater than
zero and the Cauchy principal value for arguments less than
zero.

EJCN Evaluates the Jacobi elliptic function cn(x, m).

EJDN This function evaluates the Jacobi elliptic function dn(x, m).

EJSN Evaluates the Jacobi elliptic function sn(x, m).

ELE Evaluates the complete elliptic integral of the second kind E(x).

ELK Evaluates the complete elliptic integral of the kind K(x).

ELRC Evaluates an elementary integral from which inverse circular
functions, logarithms and inverse hyperbolic functions can be
computed.

ELRD Evaluates Carlson’s incomplete elliptic integral of the second
kind RO(X, Y, 2).

ELRF Evaluates Carlson’'s incomplete elliptic integral of the first kind
RF(X, Y, Z).

ELRJ Evaluates Carlson’s incomplete elliptic integral of the third kind
RI(X Y, Z, RHO).

ENE Evaluates the exponential integral of integer order for argu-
ments greater than zero scaled by EXP(X).

ERF Evaluates the error function.

ERFC Evaluates the complementary error function.

ERFCE Evaluates the exponentially scaled complementary error
function.

ERFCI Evaluates the inverse complementary error function.

ERFI Evaluates the inverse error function.

ERSET Sets error handler default printer and stop actions.

EXPDF Evaluates the exponential cumulative distribution function.

EXPI' N Evaluates the inverse of the exponential cumulative distribution
function.

EXPPR Evaluates the exponential probability density function.

EXPRL Evaluates (€* - 1)/x for real or complex x.

EXVDF Evaluates the extreme value cumulative distribution function.
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EXVI N Evaluates the inverse of the extreme value cumulative distribu-
tion function.

EXVPR Evaluates the extreme value probability density function.

FAC Evaluates the factorial of the argument.

FDF Evaluates the F cumulative distribution function.

FI' N Evaluates the inverse of the F cumulative distribution function.

FNDF Noncentral F cumulative distribution function.

FNI' N This function evaluates the inverse of the noncentral F cumula-
tive distribution function (CDF).

FNPR This function evaluates the noncentral F cumulative distribution
function (CDF).

FPR Evaluates the F probability density function.

FRESC Evaluates the cosine Fresnel integral.

FRESS Evaluates the sine Fresnel integral.

GANVDF Evaluates the gamma cumulative distribution function.

GAM Evaluates the incomplete gamma function.

GAM C Evaluates the complementary incomplete gamma function.

GAM N This function evaluates the inverse of the gamma cumulative
distribution function.

GAM T Evaluates the Tricomi form of the incomplete gamma function.

GAMVA Evaluates the real or complex gamma function, '(x).

GAMPR This function evaluates the gamma probability density function.
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GAMR Evaluates the reciprocal of the real or complex gamma function,
1T (x).

GCDF Evaluates a general continuous cumulative distribution function
given ordinates of the density.

GClI' N Evaluates the inverse of a general continuous cumulative distri-
bution function given ordinates of the density.

GEODF Evaluates the discrete geometric cumulative probability distri-
bution function.

CGEA N Evaluates the inverse of the geometric cumulative probability
distribution function.

CECPR Evaluates the discrete geometric probability density function.

GFNI'N Evaluates the inverse of a general continuous cumulative distri-
bution function given in a subprogram.

HYPDF Evaluates the hypergeometric cumulative distribution function.

HYPPR Evaluates the hypergeometric probability density function.

| ERCD and N1RTY

Retrieves the integer code for an informational error.

I FNAN( X) Checks if a value is NaN (not a number).
I MVACH Retrieves integer machine constants.
INITS Initializes the orthogonal series so the function value is the

number of terms needed to insure the error is no larger than
the requested accuracy.
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LOGLO Evaluates the complex base 10 logarithm, logqg z.

MATCE Evaluates a sequence of even, periodic, integer order, real
Mathieu functions.

MATEE Evaluates the eigenvalues for the periodic Mathieu functions.

MATSE Evaluates a sequence of odd, periodic, integer order, real

Mathieu functions.

| ERCD and N1RTY

Retrieves the error type set by the most recently called IMSL
routine.

POCH Evaluates a generalization of Pochhammer’s symbol.

POCHL Evaluates a generalization of Pochhammer’s symbol starting
from the first order.

PO DF Evaluates the Poisson cumulative distribution function.
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PO PR Evaluates the Poisson probability density function.

PSI Evaluates the derivative of the log gamma function.

PSI 1 Evaluates the second derivative of the log gamma function.

RALDF Evaluates the Rayleigh cumulative distribution function.

RALI N Evaluates the inverse of the Rayleigh cumulative distribution
function.

RALPR Evaluates the Rayleigh probability density function.

SHI Evaluates the hyperbolic sine integral.

Sl Evaluates the sine integral.

SI NDG Evaluates the sine for the argument in degrees.

SPENC Evaluates a form of Spence’s integral.

TAN Evaluates tan z for complex z.

TDF Evaluates the Student's t cumulative distribution function.

TIN Evaluates the inverse of the Student's t cumulative distribution

function.
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TNDF Evaluates the noncentral Student’s t cumulative distribution
function.

TNI N Evaluates the inverse of the noncentral Student’s t cumulative
distribution function.

TNPR This function evaluates the noncentral Student's t probability
density function.

TPR Evaluates the Student'’s t probability density function.

UVACH Sets or Retrieves input or output device unit numbers.

UNDF Evaluates the uniform cumulative distribution function.

UNDDF Evaluates the discrete uniform cumulative distribution function.

UNDI N Evaluates the inverse of the discrete uniform cumulative distri-
bution function.

UNDPR Evaluates the discrete uniform probability density function.

UNI N Evaluates the inverse of the uniform cumulative distribution
function.

UNPR Evaluates the uniform probability density function.

WBL DF Evaluates the Weibull cumulative distribution function

WBLI N Evaluates the inverse of the Weibull cumulative distribution
function.

WBLPR Evaluates the Weibull probability density function.

506



Appendix B, References

Abramowitz and Stegun

Abramowitz, Milton, and Irene A. Stegun (editors) (1964), Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, National Bureau of Standards, Washington.

Abramowitz, Milton, and Irene A. Stegun (editors) (1972), Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, 10th Edition, US Government Printing Office, Washington, DC, Chapter 9.

Aird and Howell
Aird, Thomas J., and Byron W. Howell (1991), IMSL Technical Report 9103, IMSL, Houston.

Akima

Akima, H. (1970), A new method of interpolation and smooth curve fitting based on local procedures, Journal of
the ACM, 17, 589- 602.

Barnett

Barnett, A.R. (1981), An algorithm for regular and irregular Coulomb and Bessel functions of real order to
machine accuracy, Computer Physics Communications, 21, 297- 314.

Boisvert, Howe, Kahaner, and Springmann

Boisvert, Ronald F., Sally E. Howe, David K. Kahaner, and Jeanne L. Springmann (1990), Guide to Available Mathe-
matical Software, NISTIR 90-4237, National Institute of Standards and Technology, Gaithersburg, Maryland.

Boisvert, Ronald F., Sally E. Howe, and David K. Kahaner (1985), GAMS: A framework for the management of scien-
tific software, ACM Transactions on Mathematical Software, 11, 313- 355.

Bosten and Battiste

Bosten, Nancy E., and E.L. Battiste (1974b), Incomplete beta ratio, Communications of the ACM, 17, 156- 157.

Bosten, Nancy E., and E.L. Battiste (1974), Remark on algorithm 179, Communications of the ACM, 17, 153.

Burgoyne

Burgoyne, F.D. (1963), Approximations to Kelvin functions, Mathematics of Computation 83, 295- 298.

507



Butler and Paolella

Butler, R. W., and M. S. Paolella (1999), Calculating the Density and Distribution Function for the Singly and Doubly
Noncentral F, Preliminary Version, Paolella.pdf, p.10, eq.(30) and ff.

Carlson

Carlson, B.C. (1979), Computing elliptic integrals by duplication, Numerische Mathematik, 33, 1- 16.

Carlson and Notis

Carlson, B.C., and E.M. Notis (1981), Algorithms for incomplete elliptic integrals, ACM Transactions on Mathematical
Software, 7, 398- 403.

Cody

Cody, WJ. (1969) Performance testing of function subroutines, Proceedings of the Spring Joint Computer Conference,
American Federation for Information Processing Societies Press, Montvale, New Jersey, 759- 763.

Cody, W . (1983), Algorithm 597: A sequence of modified Bessel functions of the first kind, ACM Transactions on
Mathematical Software, 9, 242- 245,

Cody et al.

Cody, WJ., RM. Motley, and L.W. Fullerton (1976), The computation of real fractional order Bessel functions of the
second kind, Applied Mathematics Division Technical Memorandum No. 291, Argonne National Laboratory, Argonne.

Conover

Conover, W.J. (1980), Practical Nonparametric Statistics, 2d ed., John Wiley & Sons, New York.

Cooper

Cooper, B.E. (1968), Algorithm AS4, An auxiliary function for distribution integrals, Applied Statistics, 17, 190- 192.

Eckhardt

Eckhardt, Ulrich (1977), A rational approximation to Weierstrass' P-function. Il: The Lemniscatic case, Computing,
18, 341- 349.

Eckhardt, Ulrich (1980), Algorithm 549: Weierstrass' elliptic functions, ACM Transactions on Mathematical Software,
6, 112-120.

508


http://fmwww.bc.edu/CEF99/papers/Paolella.pdf

Fabijonas et al.

B. R. Fabijonas, D. W. Lozier, and F. W. . Olver Computation of Complex Airy Functions and Their Zeros Using
Asymptotics and the Differential Equation, ACM Transactions on Mathematical Software, Vol. 30, No. 4, December
2004, 471-490.

Fox et al.

Fox, P.A., A.D. Hall, and N.L. Schryer (1978), The PORT mathematical subroutine library, ACM Transactions on Math-
ematical Software, 4, 104- 126.

Gautschi

Gautschi, Walter (1964), Bessel functions of the first kind, Communications of the ACM, 7, 187- 198.

Gautschi, Walter (1969), Complex error function, Communications of the ACM, 12, 635. Gautschi, Walter (1970), Effi-
cient computation of the complex error function, SIAM Journal on Mathematical Analysis, 7, 187- 198.

Gautschi, Walter (1974), Algorithm 471: Exponential integrals, Collected Algorithms from CACM, 471.

Gautschi, Walter (1979), A computational procedure for the incomplete gamma function, ACM Transactions on
Mathematical Software, 5, 466- 481.

Gautschi, Walter (1979), Algorithm 542: Incomplete gamma functions, ACM Transactions on Mathematical Software,
5, 482- 489.

Giles and Feng

Giles, David E. and Hui Feng. (2009). “Bias-Corrected Maximum Likelihood Estimation of the Parameters of the
Generalized Pareto Distribution.” Econometrics Working Paper EWP0902, Department of Economics, University
of Victoria.

Gradshteyn and Ryzhik

Gradshteyn, I.S. and .M. Ryzhik (1965), Table of Integrals, Series, and Products, (translated by Scripta Technica, Inc.),
Academic Press, New York.

Hart et al.

Hart, John F., EW. Cheney, Charles L. Lawson, Hans J. Maehly, Charles K. Mesztenyi, John R. Rice, Henry G. Thacher,
Jr., and Christoph Witzgall (1968), Computer Approximations, John Wiley & Sons, New York.

509



Hill
Hill, G.W. (1970), Student’s t-distribution, Communications of the ACM, 13, 617- 619.

Hodge

Hodge, D.B. (1972), The calculation of the eigenvalues and eigenvectors of Mathieu’s equation, NASA Contractor
Report, The Ohio State University, Columbus, Ohio.

Hosking, et al.

Hosking, J.R.M., Wallis, J.R., and E.F. Wood. (1985). “Estimation of the Generalized Extreme Value Distribution by the
Method of Probability-Weighted Moments.” Technometrics. Vol 27. No. 3. pp 251-261.

Hosking and Wallis

Hosking, J.R.M. and J.R. Wallis. (1987). “Parameter and Quantile Estimation for the Generalized Pareto Distribu-
tion." Technometrics. Vol 29. No. 3. pp 339-349.

IEEE
ANSI/IEEE Std 754-1985 (1985), IEEE Standard for Binary Floating-Point Arithmetic, The IEEE, Inc., New York.

Johnson and Kotz

Johnson, Norman L., and Samuel Kotz (1969), Discrete Distributions, Houghton Mifflin Company, Boston.
Johnson, Norman L., and Samuel Kotz (1970a), Continuous Distributions-1, John Wiley & Sons, New York.

Johnson, Norman L., and Samuel Kotz (1970b), Continuous Distributions-2, John Wiley & Sons, New York.

Kendall and Stuart

Kendall, Maurice G., and Alan Stuart (1979), The Advanced Theory of Statistics, Volume 2: Inference and Relationship,
4th ed., Oxford University Press, New York.

Kim and Jennrich

Kim, PJ., and Jennrich, R.I. (1973), Tables of the exact sampling distribution of the two sample
Kolmogorov-Smirnov criterion Dmn (m < n), in Selected Tables in Mathematical Statistics, Volume 1, (edited by H.L.
Harter and D.B. Owen), American Mathematical Society, Providence, Rhode Island.

510



Kinnucan and Kuki

Kinnucan, P., and H. Kuki (1968), A single precision inverse error function subroutine, Computation Center, University
of Chicago.

Luke

Luke, Y.L. (1969), The Special Function and their Approximations, Volume 1, Academic Press, 34.

Majumder and Bhattacharjee

Majumder, K. L., and G. P. Bhattacharjee (1973), The Incomplete Beta Integral, Algorithm AS 63:Journal of the Royal
Statistical Society. Series C (Applied Statistics), Vol. 22, No. 3,. 409-411, Blackwell Publishing for the Royal Statistical
Society, htt p: // www. j st or . or g/ st abl e/ 2346797.

NATS FUNPACK

NATS (National Activity to Test Software) FUNPACK (1976), Argonne National Laboratory, Argonne Code Center,
Argonne.

Olver and Sookne

Olver, FWJ., and D.J. Sookne (1972), A note on the backward recurrence algorithms, Mathematics of Computation,
26, 941-947.

Owen

Owen, D.B. (1962), Handbook of Statistical Tables, Addison-Wesley Publishing Company, Reading, Mass.

Owen, D.B. (1965), A special case of the bivariate non-central t-distribution, Biometrika, 52, 437- 446.

Pennisi

Pennisi, L.L. (1963), Elements of Complex Variables, Holt, Rinehart and Winston, New York.

Skovgaard
Skovgaard, Ove (1975), Remark on algorithm 236, ACM Transactions on Mathematical Software, 1, 282- 284.

Sookne

Sookne, DJ. (1973a), Bessel functions | and ] of complex argument and integer order, National Bureau of Standards
Journal of Research B, 77B, 111- 114.

511


http://www.jstor.org/stable/2346797

Sookne, D.J. (1973b), Bessel functions of real argument and integer order, National Bureau of Standards Journal of
Research B, 77A, 125- 132.

Stephens

Stephens, M.A., and D'Agostino, R.B (1986), Tests based on EDF statistics., Goodness-of-Fit Techniques. Marcel
Dekker, New York.

Strecok

Strecok, Anthony J. (1968), On the calculation of the inverse of the error function, Mathematics of Computation, 22,
144- 158.

Temme

Temme, N. M. (1975), On the numerical evaluation of the modified Bessel function of the third kind, Journal of
Computational Physics, 19, 324- 337.

Thompson and Barnett

Thompson, IJ. and AR. Barnett (1987), Modified Bessel functions /Uz) and KWz) of real order and complex argu-
ment, to selected accuracy, Computer Physics Communications, 47, 245- 257.

Yousif and Melka

Yousif, Hashim A., and Richard Melka (1997), Bessel function of the first kind with complex argument, Computer
Physics Communications, vol. 106, no. 3, 199- 206.

Yousif, Hashim A., and Richard Melka (2003), Computing Bessel functions of the second kind in extreme parame-
ter regimes, Computer Physics Communications, 151, 25- 34.

512



Index

A

Airy function 230, 246

derivative 234, 250

exponentially scaled 238
derivative 242

second kind 232, 248
derivative 236, 252
exponentially scaled 240
exponentially scaled

derivative 244

arguments, optional
subprogram 12

B

Bessel functions
first kind
integer order 173
order one 150
order zero 148
real order 179, 191
modified
exponentially scaled 165,
167, 169, 171, 185,
189
first kind,
order 176
first kind, nonnegative real
order 185
first kind, order one 158,
167
first kind, order zero 156,
165
first kind, real order 183,
197
kind, fractional
order 189
kind,
one 163, 171
kind, order
zero 160, 169
kind, real
order 199
kind,  fractional
order 187

integer

second
second order
second

second

third

second kind
order one 154
order zero 152
real nonnegative
order 181
real order 194
beta distribution function 346
beta functions
complete 88, 115
natural logarithm 118
incomplete 121
beta probability density 348
beta probability distribution
function 343
binomial coefficient 87
binomial distribution function 296
binomial probability function 298
bivariate normal distribution
function 359

C
Cauchy principal value 62, 64
characteristic values 455
Chebyshev series 468, 474
chi-squared distribution
function 361, 364, 368
chi-squared probability
density 366
complex numbers
evaluating 17
continuous data 324, 327
cosine
arc
hyperbolic 55
complex 41
hyperbolic 49
in degrees 37
integrals 73, 75
hyperbolic 79, 81
cotangent
evaluating 32
cube roots

evaluating 19

cumulative distribution
function 443

cumulative distribution functions
(CDF) 291

D

Dawson'’s function
evaluating 140

discrete uniform cumulative
probability 318

discrete uniform cumulative prob-
ability distribution 318

discrete uniform probability
density 322

discrete uniform random
variable 320

distribution functions 291
cumulative (CDF) 291
general continuous cumulative
inverse 447

double precision 1
DOUBLE PRECISION types 6

E
eigenvalues 455
elementary functions 3
elliptic integrals
complete 258
second kind 260
first kind
Carlson's incomplete 262
second kind
Carlson's incomplete 264
third kind
Carlson's incomplete 266

error functions 124, 125
complementary 127
complex scaled 132
exponentially scaled 130
inverse 137
inverse 134

513



INDEX

error handling 481
error-handling 9, 13

errors
alert 295
informational 477
note 295
severity level 13
terminal 295, 477
warning 295
exponential cumulative probability
distribution 376

exponential functions
first order 21

exponential integrals 61, 62, 64
of integer order 66

exponential probability
density 380

extreme value cumulative proba-
bility distribution 382

extreme value probability
density 386

F
F distribution function 388, 391
factorial 85

Fresnal integrals 124
cosine 142
sine 144

G

gamma distribution function 404,
407
gamma distributions
standard 291
gamma functions 84
complete 89
incomplete 99
complementary 102
Tricomi form 104
logarithmic derivative 106, 109
reciprocal 92
gamma probability density 409
general continuous cumulative dis-
tribution function 451
Geometric
inverse of the geometric cumu-
lative probability
distribution 303

geometric cumulative probability
distribution 301

geometric probability density 305
getting started 2, 11

H

hyperbolic functions 3

hypergeometric distribution
function 307

hypergeometric probability
function 310

|

INTEGER types 6

inverse of the exponential cumula-
tive probability 378

inverse of the geometric cumula-
tive probability
distribution 303

inverse of the lognormal cumula-
tive probability
distribution 332

inverse of the Rayleigh cumulative
probability distribution 413

inverse of the uniform cumulative
probability distribution 433

inverse of the Weibull cumulative
probability distribution 439

J
Jacobi elliptic function 280, 283, 286

K

Kelvin function
first kind
order one 223
order zero 205, 207, 213,
215
second kind
order one 225, 227
order zero 209, 211, 217,
219

Kolmogorov-Smirnov goodness of
fit 324, 327

L
library subprograms 8
logarithmic integrals 68

logarithms
complex
common 23
for gamma functions 94, 97
natural 25, 118

lognormal cumulative probability
distribution 330

lognormal probability density 334

M

machine-dependent
constants 482

Mathieu functions
even 459
integer order 459, 463
odd 463
periodic 456, 459, 463
real 459, 463

N
naming conventions 6

noncentral chi-squared
function 371

normal probability density 341

o]
optional argument 12
optional data 11

optional subprogram
arguments 12

ordinates of the density 443
orthogonal series 472
overflow 9, 25

P

Pochhammer's symbol 111, 113,
468

Poisson distribution function 313
Poisson probability function 315
printing 480

printing results 14

probability density function
(PDF) 292

probability functions 291

R
Rayleigh cumulative probability

514



INDEX

distribution 411, 412
Rayleigh probability density 415
REAL types 6
required arguments 12

S
sine
arc
hyperbolic 53
complex
arc 39

hyperbolic 47
in degrees 35
integrals 71
hyperbolic 77
single precision 1
Spence's integral 470
standard normal (Gaussian) distri-
bution function 336, 339
Student’s t distribution
function 417, 420, 424, 427

subprograms
library 8
optional arguments 12
T
tangent
arc
hyperbolic 57
complex 30
arc 43

arc of a ratio 45
hyperbolic 51

trigonometric functions 3

U
underflow 9

uniform cumulative probability
distribution 431

uniform probability density 435
user interface 1
using library subprograms 8

W

Weibull cumulative probability
distribution 437, 438

Weibull cumulative probability dis-
tribution function 437

Weibull probability density 441
Weibull random variable 439

Weierstrass' function
equianharmonic case 276, 278
lemniscatic case 272, 274

515



INDEX

516



	Contents
	Introduction
	The IMSL Fortran Numerical Libraries
	Getting Started
	Finding the Right Routine
	Organization of the Documentation
	Naming Conventions
	Using Library Subprograms
	Programming Conventions
	Module Usage
	Programming Tips
	Optional Subprogram Arguments
	Error Handling
	Printing Results

	Elementary Functions
	Routines
	Usage Notes
	CARG
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	CBRT
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Examples

	EXPRL
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Examples

	LOG10
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ALNREL
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Examples


	Trigonometric and Hyperbolic Functions
	Routines
	Usage Notes
	TAN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	COT
	Function Value Return
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Examples

	SINDG
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	COSDG
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ASIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ACOS
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ATAN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	ATAN2
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	SINH
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	COSH
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	TANH
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ASINH
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Examples

	ACOSH
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Examples

	ATANH
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Examples


	Exponential Integrals and Related Functions
	Routines
	Usage Notes
	EI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	E1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	ENE
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ALI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	SI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	CI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	CIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	SHI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	CHI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	CINH
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example


	Gamma Function and Related Functions
	Routines
	Usage Notes
	FAC
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	BINOM
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	GAMMA
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Examples

	GAMR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Examples

	ALNGAM
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Examples

	ALGAMS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	GAMI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	GAMIC
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	GAMIT
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	PSI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Examples

	PSI1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	Description
	Comments
	Example

	POCH
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	POCH1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BETA
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Examples

	ALBETA
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Examples

	BETAI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example


	Error Function and Related Functions
	Routines
	Usage Notes
	ERF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ERFC
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	ERFCE
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	CERFE
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ERFI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	ERFCI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	DAWS
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	FRESC
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	FRESS
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example


	Bessel Functions
	Routines
	Usage Notes
	BSJ0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BSJ1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	BSY0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BSY1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BSI0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BSI1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	BSK0
	Function Return Value
	Required Arguments
	Fortran 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	BSK1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	BSI0E
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BSI1E
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	BSK0E
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BSK1E
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BSJNS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Examples

	BSINS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Examples

	BSJS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	BSYS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BSIS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BSIES
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BSKS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	BSKES
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	CBJS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	CBYS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	CBIS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	CBKS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output


	Kelvin Functions
	Routines
	Usage Notes
	BER0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BEI0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	AKER0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	AKEI0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BERP0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BEIP0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	AKERP0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	AKEIP0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BER1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BEI1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	AKER1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	AKEI1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example


	Airy Functions
	Routines
	AI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	BI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	AID
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	BID
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	AIE
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BIE
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	AIDE
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BIDE
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	CAI
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Comments
	Example

	CBI
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Comments
	Example

	CAID
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Comments
	Example

	CBID
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Comments
	Example


	Elliptic Integrals
	Routines
	Usage Notes
	Carlson Elliptic Integrals

	ELK
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ELE
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ELRF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ELRD
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ELRJ
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ELRC
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example


	Elliptic and Related Functions
	Routines
	Usage Notes
	CWPL
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	CWPLD
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	CWPQ
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	CWPQD
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	EJSN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Examples

	EJCN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Examples

	EJDN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Examples


	Probability Distribution Functions and Inverses
	Routines
	Usage Notes
	Discrete Random Variables
	Continuous Distributions
	Additional Comments

	BINDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	BINPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	GEODF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	GEOIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	GEOPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	HYPDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	HYPPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	POIDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	POIPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	UNDDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	UNDIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	UNDPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	AKS1DF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Programming Notes
	Example

	AKS2DF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Programming Notes
	Example

	ALNDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ALNIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ALNPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ANORDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ANORIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ANORPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BETDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	BETIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	BETPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BETNDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	Description
	Example

	BETNIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	Description
	Example

	BETNPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	Description
	Example

	BNRDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	CHIDF
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	CHIIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	CHIPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	CSNDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	CSNIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	CSNPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	Description
	Example

	EXPDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	EXPIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	EXPPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	EXVDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	EXVIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	EXVPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	FDF
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	FIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	FPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	FNDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	Description
	Example

	FNIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	Description
	Example

	FNPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	Description
	Example

	GAMDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	GAMIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	GAMPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	RALDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	RALIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	RALPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	TDF
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	TIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	TPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	TNDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	TNIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	TNPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	Description
	Example

	UNDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	UNIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	UNPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	WBLDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	WBLIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	WBLPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	GCDF
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	GCIN
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	GFNIN
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output


	Mathieu Functions
	Routines
	Usage Notes
	MATEE
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	MATCE
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Examples

	MATSE
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output


	Miscellaneous Functions
	Routines
	Usage Notes
	SPENC
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	INITS
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments

	CSEVL
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments


	Reference Material
	Routines/Topics
	User Errors
	What Determines Error Severity
	Kinds of Errors and Default Actions
	Errors in Lower-Level Routines
	Routines for Error Handling

	ERSET
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface

	IERCD and N1RTY
	Examples

	Machine-Dependent Constants
	IMACH
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface

	AMACH
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Comments

	DMACH
	IFNAN(X)
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	UMACH
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	Reserved Names
	Deprecated Features and Deleted Routines
	Automatic Workspace Allocation
	Changing the Amount of Space Allocated
	Character Workspace


	Alphabetical Summary of Routines
	References
	Index

